Jezik: | Slovenski jezik |
---|---|
Leto izida: | 2020 |
Tipologija: | 2.09 - Magistrsko delo |
Organizacija: | UL FMF - Fakulteta za matematiko in fiziko |
Založnik: | [K. Černe] |
UDK: | 519.6 |
COBISS: | 19411971 |
Št. ogledov: | 1372 |
Št. prenosov: | 180 |
Ocena: | 0 (0 glasov) |
Metapodatki: |
Sekundarni jezik: | Angleški jezik |
---|---|
Sekundarni naslov: | Construction of geometrically continuous parametric surfaces |
Sekundarni povzetek: | This thesis presents the notion of geometric continuity between adjacent parametric surfaces. It describes the necessary and sufficient conditions for two adjacent surfaces joining $G^n$-continuously and geometric interpretation of $G^1$-continuity. Triangular and tensor product polynomial Bézier patches are introduced and their properties are given. An important result of this work is a derivation of necessary and sufficient conditions for $G^n$-continuity between two adjacent tensor product Bézier surfaces. Those conditions, expressed with control points, are then used in examples of $G^1$ and $G^2$-continuous Bézier surfaces. The comparison with $C^1$ and $C^2$-continuity conditions is given too. The obtained results are applied to derive the compatibility conditions for $N$ surfaces joining $G^1$-continuously at the common vertex. |
Sekundarne ključne besede: | geometric continuity;Gn-continuity conditions;Bézier patches;computer aided geometric design; |
Vrsta dela (COBISS): | Magistrsko delo/naloga |
Študijski program: | 0 |
Konec prepovedi (OpenAIRE): | 1970-01-01 |
Komentar na gradivo: | Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 2. stopnja |
Strani: | IX, 61 str. |
ID: | 11828941 |