magistrsko delo
Gašper Petelin (Avtor), Igor Kononenko (Mentor)

Povzetek

V zadnjih letih so na področju strojnega učenja umetne nevronske mreže dosegle precejšen preboj in trenutno na nekaterih domenah dosegajo precej bolše rezultate kot klasične metode strojnega učenja. S popularizacijo nevronskih mrež pa je začela rasti tudi njihova kompleksnost, kar v praksi pomeni počasnejše in manj stabilno učenje ter potreba po večji količini podatkov. V okviru magistrske naloge je predstavljen nov podatkovno voden način inicializacije uteži nevronskih mrež, ki idejo črpa iz nenadzorovanega učenja, začetne uteži ciljne nevronske mreže izračuna s pomočjo učnih podatkov. Tak način lahko v določenih primerih precej izboljša hitrost učenja in točnost napovedi. Prednost predlagane inicializacije je tudi ta, da jo je možno izvesti paralelno, kar precej pospeši celoten proces inicializacije. Predlagana inicializacija in vpliv njenih parametrov je testiran na učni množici slik in učni množici genskih podatkov.

Ključne besede

nevronske mreže;inicializacija uteži;podatkovno vodena inicializacija;računalništvo;računalništvo in informatika;magisteriji;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.09 - Magistrsko delo
Organizacija: UL FRI - Fakulteta za računalništvo in informatiko
Založnik: [G. Petelin]
UDK: 004.8(043.2)
COBISS: 32849411 Povezava se bo odprla v novem oknu
Št. ogledov: 892
Št. prenosov: 173
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Data driven neural network weight initialization
Sekundarni povzetek: In recent years the popularity of artificial neural networks has grown within the field of machine learning. Neural networks have achieved surprisingly good results in specific domains compared to other more traditional machine learning approaches. But with growth in their popularity, their complexity also grew. More complex neural networks are usually harder to train since the process is less stable and it requires more training data. A new data-driven weight initialization is proposed, that is based on unsupervised learning and is using training data to approximate optimal weights. This new approach is useful and in some cases gives a large boost to neural network learning speed and accuracy. Initialization is also scalable since it is easy to parallelize. Proposed initialization and optimal values of its parameters are tested on a dataset of images and datasets of biological gene expressions.
Sekundarne ključne besede: neural networks;weight initialization;data driven initialization;computer science;computer and information science;master's degree;
Vrsta dela (COBISS): Magistrsko delo/naloga
Študijski program: 1000471
Konec prepovedi (OpenAIRE): 1970-01-01
Komentar na gradivo: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Strani: 97 str.
ID: 11864347