Jezik: | Slovenski jezik |
---|---|
Leto izida: | 2020 |
Tipologija: | 2.11 - Diplomsko delo |
Organizacija: | UL FMF - Fakulteta za matematiko in fiziko |
Založnik: | [T. Bertok] |
UDK: | 519.8 |
COBISS: | 33321219 |
Št. ogledov: | 1398 |
Št. prenosov: | 157 |
Ocena: | 0 (0 glasov) |
Metapodatki: |
Sekundarni jezik: | Angleški jezik |
---|---|
Sekundarni naslov: | Random matrix games |
Sekundarni povzetek: | Random matrix games are ordinary matrix games whose payouts are random variables. The thesis is based on a comparison of the value of the average game and the average value of the game. A matrix game is a random matrix. At the forefront is a test of the hypothesis that a version of Jensen's inequality holds, namely that the average value of the game is always greater than or equal to the value of the average game. We tested the hypothesis first on 2x2 matrices, later also on 3x3 matrices. |
Sekundarne ključne besede: | mathematics;game theory;random matrix games;game value;saddle point;Nash equilibrium; |
Vrsta dela (COBISS): | Delo diplomskega seminarja/zaključno seminarsko delo/naloga |
Študijski program: | 0 |
Konec prepovedi (OpenAIRE): | 1970-01-01 |
Komentar na gradivo: | Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Finančna matematika - 1. stopnja |
Strani: | 25 str. |
ID: | 11955967 |