diploma thesis
Luka Žontar (Avtor), Zoran Bosnić (Mentor)

Povzetek

In this thesis we try to develop a methodology that can adapt texts to target publication types using summarization, natural language generation and paraphrasing. The solution is based on key text characteristics that describe different publication types. To examine types such as social media posts, newspaper articles, research articles and official statements, we use three distinct text evaluation metrics: length, text polarity and readability. While altering key text evaluation metrics, we mostly focus on length due to much research that was done in this field (either with summarization or natural language generation). Using paraphrasing we will try to adjust text readability and polarity that describes reader's negative or positive orientation towards the topic. The process of text adaptation will be implemented iteratively. The developed methodology will automatize writing articles that are based on existing articles. The more crucial contribution of this thesis is that we help to gain access of harder works to those that cannot understand the origin texts.

Ključne besede

text adaptation;context-aware;artificial intelligence;text summarization;natural language processing;computer and information science;diploma;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FRI - Fakulteta za računalništvo in informatiko
Založnik: [L. Žontar]
UDK: 004.8:81'322.2(043.2)
COBISS: 28976643 Povezava se bo odprla v novem oknu
Št. ogledov: 1276
Št. prenosov: 175
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarni naslov: Prilagoditev besedil kontekstu objave
Sekundarni povzetek: V tem diplomskem delu skušamo razviti metodologijo, ki bo znala s pomočjo povzemanja, generiranja naravnega jezika in parafraziranja prilagoditi be\-se\-di\-lo ciljnemu kontekstu objave. Za rešitev problema se najprej osredotočimo na ključne karakteristike, ki določajo obravnavane tipe objav. Za obravnavo štirih razlilčnih tipov, ki so objave na socialnih omrežjih, novice, znanstveni članki in uradne izjave, uporabimo tri karakteristike: dolžino, polarnost besedila in berljivost. Pri spreminjanju ključnih karakteristik se osredotočimo predvsem na dolžino, saj se veliko raziskav nanaša na prilagajanje teksta, bodisi s povzemanjem ali generiranjem naravnega jezika. S pomočjo parafraziranja bomo skušali prilagajati berljivost in polarnost teksta, ki priča o negativni oziroma pozitivni naravnanosti bralca k besedilu. Proces prilagajanja besedil bo potekal iterativno. Razvita metodologija bo avtomatizirala proces pisanja člankov, ki temeljijo na obstoječih delih. Še bolj pomembno pa je, da s tem omogočimo dostop zahtevnejših del tistim, ki jih v prvotni obliki ne razumejo.
Sekundarne ključne besede: prilagajanje besedil;kontekstno-odvisen;umetna inteligenca;procesiranje naravnega jezika;računalništvo in informatika;univerzitetni študij;diplomske naloge;
Vrsta dela (COBISS): Diplomsko delo/naloga
Študijski program: 1000468
Konec prepovedi (OpenAIRE): 1970-01-01
Komentar na gradivo: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Strani: 79 str.
ID: 12029426