Jezik: | Slovenski jezik |
---|---|
Leto izida: | 2020 |
Tipologija: | 2.09 - Magistrsko delo |
Organizacija: | UL FMF - Fakulteta za matematiko in fiziko |
Založnik: | [A. Kolar-Požun] |
UDK: | 538.9 |
COBISS: | 34893315 |
Št. ogledov: | 400 |
Št. prenosov: | 97 |
Ocena: | 0 (0 glasov) |
Metapodatki: |
Sekundarni jezik: | Angleški jezik |
---|---|
Sekundarni naslov: | Quenches Between Topological Phases in a Disordered Su-Schrieffer-Heeger Model |
Sekundarni povzetek: | We consider a disordered Su-Schrieffer-Heeger model. In such a system a transition between topological phases is also possible by changing the strength of the disorder. The critical point of this phase transition coincides with the delocalization of the zero energy state, while in its neighbourhood we observe a wide area without the energy gap. The main part of our work is devoted to the study of slow Hamiltonian quenches over the previously mentioned critical point. During the quench, excitations in the conduction band appear with their number scaling as a power law of the quench speed with a logarithmic correction. A power law scaling is also observed in the dependence of the highest excited electrons' energies on the quench speed. For slow enough quenches we find universal dependence of the number of excitations on time. We conclude with a detailed analysis of individual excitations and notice that the quenched state generally transitions to only two states in the conduction band. |
Sekundarne ključne besede: | topological insulators;Su-Schrieffer-Heeger model;disorder;Anderson localization;quenches; |
Vrsta dela (COBISS): | Magistrsko delo/naloga |
Študijski program: | 0 |
Konec prepovedi (OpenAIRE): | 1970-01-01 |
Komentar na gradivo: | Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za fiziko |
Strani: | 60 str. |
ID: | 12098895 |