magistrsko delo
Jure Taslak (Avtor), Andrej Bauer (Mentor)

Povzetek

V nalogi je razvita funktorialna semantika za algebrajsko in regularno kategorno logiko. V prvem delu je najprej na kratko predstavljena teorija kategorij, nato se uvede pojem algebrajske teorije, ki je poseben primer logične teorije prvega reda, v kateri nastopajo samo enačbe in operacije. Razširi se klasična interpretacija modela teorije na vse kategorije, v katerih je mogoče tako teorijo izraziti. Za vsako algebrajsko teorijo lahko definiramo posebno sintaktično kategorijo, ki to teorijo predstavlja. Izkaže se, da lahko vsak model algebrajske teorije enolično identificiramo s funktorjem, ki ohranja strukturo sintaktične kategorije. To je izraženo v obliki ekvivalence kategorij. S pomočjo te ekvivalence je raziskana dualnost med sintakso in semantiko algebrajske teorije. Drugi del se začne z opisom razreda kategorij imenovanih regularne in motivacijo za njihovo vpeljavo v obliki primerov in lepih lastnosti s katerimi se ponašajo. Nato se razvije razširitev enostavne algebrajske logike iz prvega dela na tako imenovano regularno logiko, v kateri poleg enačb in operacij nastopajo še relacijski simboli, resničnostna konstanta, konjunkcija in kvantifikator obstoja. To naredi logiko bolj bogato in v njej je mogoče izraziti koncepte kot je slika morfizma. Analogno kot v prvem delu se za regularno teorijo definira njeno sintaktično kategorijo, s pomočjo katere se pokaže ekvivalenco med modeli regularne logike in funktorji, ki ohranjajo regularno strukturo.

Ključne besede

teorija kategorij;algebrajske teorije;dualnost;funktorialna semantika;kategorije;kategorna logika;logika;regularna logika;regularne kategorije;sintaktična kategorija;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.09 - Magistrsko delo
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
Založnik: [J. Taslak]
UDK: 510.6
COBISS: 52987395 Povezava se bo odprla v novem oknu
Št. ogledov: 1706
Št. prenosov: 119
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Algebraic and regular categorical logic
Sekundarni povzetek: The thesis develops functorial semantics for algebraic and regular logic. The first part starts by briefly presenting category theory, then the concept of an algebraic theory is introduced as a special case of a first order logic theory, in which you only have equations and operations. The classical notion of a model is expanded to categories in which such a theory can be expressed. For each algebraic theory we may define a special syntactic category, which represents it. It turns out that you can uniquely identify each model of such a theory with a functor that preserves the structure of the syntactic category. This is expressed in the form of an equivalence of categories. With the help of this equivalence a duality between syntax and semantics is explored. The second part begins with the description of a class of categories called regular categories and the motivation for their definition in terms of examples and nice properties that these categories posses. An extension of the simple algebraic logic is then developed into the so called regular logic which besides equations and operations includes relation symbols, the truth constant, conjunction and the existential quantifier. This makes the logic more rich and makes it possible to express concepts like the image of a morphism. Analogous with the first part we define the syntactic category of a regular theory, with the help of which you can show an equivalence between models of a regular theory and functors that preserve regular structure.
Sekundarne ključne besede: algebraic theories;categorical logic;categories;category theory;duality;functorial semantics;logic;regular categories;regular logic;sytactic category;
Vrsta dela (COBISS): Magistrsko delo/naloga
Študijski program: 0
Konec prepovedi (OpenAIRE): 1970-01-01
Komentar na gradivo: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 2. stopnja
Strani: II, 84 str.
ID: 12589003