Nejc Ilc (Avtor)

Povzetek

Over the last decade, the advent of the cluster ensemble framework has enabled more accurate and robust data analysis than traditional single clustering algorithms. The improved clustering of microarray data has had a particularly strong impact in the fields of genomics and medicine. However, when we bring several ensemble members together to form a consensus, low-quality data partitions can seriously compromise the final solution. One way to overcome this problem is the weighted cluster ensemble approach based on Partition Relevance Analysis (PRA), which uses internal cluster validity indices to evaluate and weight the ensemble members before the fusion. Unfortunately, the selection of appropriate validation indices for given data is far from trivial. In this paper, we propose an additional step in PRA that reduces the size of the committee of cluster validation indices. It does so by eliminating redundant and noisy indices using data dimensionality reduction methods. Our extension works in an unsupervised way, minimizing the amount of user intervention and required expert knowledge. We adapted three conventional consensus functions based on the principle of evidence accumulation to work with PRA weights. We demonstrate the advantages of the proposed reduction step of PRA based on extensive experiments with 25 gene expression and 15 non-genetic real-world datasets, where we compared 15 consensus functions. The source code is available at https://github.com/nejci/PRAr.

Ključne besede

analiza gruč;kazalci kvalitete razvrstitve;zmanševanje razsežnosti podatkov;učenje z ansamblom;izločanje značilnic;izbira značilnic;genska izraženost;utežen ansambel;cluster analysis;cluster validity index;dimensionality reduction;ensemble learning;feature extraction;feature selection;gene expression;weighted ensemble;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FRI - Fakulteta za računalništvo in informatiko
UDK: 004
COBISS: 20600067 Povezava se bo odprla v novem oknu
ISSN: 2169-3536
Št. ogledov: 387
Št. prenosov: 130
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: analiza gruč;kazalci kvalitete razvrstitve;zmanševanje razsežnosti podatkov;učenje z ansamblom;izločanje značilnic;izbira značilnic;genska izraženost;utežen ansambel;
Vrsta dela (COBISS): Članek v reviji
Strani: str. 113720-113736
Zvezek: ǂVol. ǂ8
Čas izdaje: Jun. 2020
DOI: 10.1109/ACCESS.2020.3003046
ID: 12688986