magistrsko delo
Laura Kocet (Avtor), Nejc Mekiš (Recenzent), Janez Žibert (Mentor), Katja Romarić (Komentor)

Povzetek

Uvod: Prisotnost popačenj oziroma artefaktov na magnetnoresonančnih slikah lahko poslabša kakovost preiskave, prikrije ali prikaže lažno patološko stanje. Artefakt zvonjenja ali Gibbsov artefakt je artefakt, ki nastane zaradi napak pri kodiranju signala. Na magnetnoresonančnih slikah se izraža kot dodatni signal v obliki svetlih ali temnih koncentričnih krožnih črt, ki so vzporedne z robovi na sliki. Globoko učenje je vrsta računalniškega algoritma, ki vhodne metapodatke uporabi za izračun izhodnih podatkov. Uporabi se lahko za zaznavanje določenih struktur na slikovnih podatkih, za delovanje pa uporablja strukturo konvolucijskih nevronskih mrež. Poznamo različne metode globokega učenja, za uporabo algoritma na majhni količini podatkov pa je najbolj uporaben pristop z adaptacijo. Namen: Namen magistrske naloge je izgradnja procesa avtomatske prepoznave artefakta zvonjenja pri slikanju z magnetno resonanco za magnetno resonančni tomograf Philips Achieva 3.0 T TX z dStream sistemom. Za izgradnjo metode prepoznave se uporabi metoda globokega učenja z adaptacijo. Metode dela: V raziskavi smo ustvarili bazo podatkov magnetnoresonančnih slik fantoma za kontrolo kakovosti, zajetih na magnetnoresonančnem tomografu Philips Achieva 3.0 T TX z dStream sistemom, ki se nahaja na Medicinski fakulteti, Univerze v Ljubljani v Centru za klinično fiziologijo. Slike smo zajemali s turbo spin echo pulznim zaporedjem v transverzalni ravnini, pri čemer smo spreminjali določene slikovne parametre. Izbrane rezine sta dve neodvisni ocenjevalki označili v dve kategoriji slik brez prisotnega artefakta zvonjenja in z njim. Na označeni bazi magnetnoresonančnih slik izbranih rezin smo izvedli prepoznavo artefakta zvonjenja z globokim učenjem z doučevanjem. Uporabili smo že obstoječo konvolucijsko nevronsko mrežo VGG16 in ji dodali dve novi plasti, ki smo ju učili z uporabo učne baze slik. Rezultati: Izgrajeni model prepoznave artefakta zvonjenja na magnetnoresonančnih slikah smo preverili na testni bazi rezin magnetnoresonančnih slik in dobili izjemne rezultate. Prepoznava na prvi rezini je bila glede na referenčno vrednost prisotnosti artefakta zvonjenja natančna v 98 %, na drugi rezini v 93 % in na tretji rezini v 98 %. Vrednosti AUC, ki odražajo kakovost izdelanega modela, presegajo vrednost 0,98. Razprava in zaključek: Točnost prepoznave artefakta zvonjenja izdelanega modela je skladna s pregledanimi študijami, saj avtorji opisujejo podobne vrednosti točnosti prepoznave z njihovimi modeli. Vrednosti se ne razlikujejo bistveno glede na to, katere vrste artefakta smo prepoznavali, prav tako se ne razlikujejo glede na uporabljeno vrsto obstoječe konvolucijske nevronske mreže. S spreminjanjem slikovnih parametrov smo sklenili, da na pojavnost Gibbsovega artefakta vplivajo velikost matrike, velikost voksla in število povprečenj. Smer zajemanja signala na pojavnost omenjenega artefakta ne vpliva. Z avtomatsko prepoznavo prisotnosti artefaktov na magnetnoresonančnih slikah se izognemo zamudnemu pregledu posameznih serij slik in olajšamo odstranjevanje in zmanjševanje pojavnosti artefaktov ter s tem posledično izboljšamo kakovost magnetnoresonančnih slik in preiskav.

Ključne besede

magistrska dela;radiološka tehnologija;artefakt zvonjenja;kakovost MR-slik;metode globokega učenja;pristop z doučevanjem;konvolucijske nevronske mreže;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.09 - Magistrsko delo
Organizacija: UL ZF - Zdravstvena fakulteta
Založnik: [L. Kocet]
UDK: 616-07
COBISS: 70420227 Povezava se bo odprla v novem oknu
Št. ogledov: 439
Št. prenosov: 83
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Automatic detection of ringing artefact in magnetic resonance imaging
Sekundarni povzetek: Introduction: Artefacts appearing on magnetic resonance images can affect the quality of examination in a way to be confused with pathology or to cover the important information. Gibbs or ringing artefact is caused by the way in which the data are sampled and processed. On magnetic resonance images appears as multiple bright or dark lines parallel to edges of intensity change. Deep learning is a computer algorithm that takes metadata as an input and processes the data to compute the output. It can be used for detection of structures in images with use of convolutional neural networks. There are different methods of deep learning, but when no large dataset is available, the most useful method is transfer learning. Purpose: The aim of this study was to develop process of automatic detection of ringing artefact in magnetic resonance imaging for magnetic resonance scanner Philips Acieva 3.0 T TX with dStream system. Deep learning method that was used for detection is transfer learning. Methods: Dataset containing magnetic resonance images of phantom for quality assurance was produced for our research. Turbo spin echo pulse sequence in transversal plane was used for scanning, while we changed some of the scanning parameters. Slices, chosen for the research, were annotated by two independent observers in two categories: images with and without ringing artefact. With use of labelled dataset, we designed algorithm of detection of ringing artefact with use of transfer learning. As pretrained network to do transfer learning, we used convolutional neural network VGG16 and added two new layers, which we trained with use of our training dataset. Results: Automatic detection model for detecting ringing artefact on magnetic resonance imaging was tested on testing dataset and it showed great results. Accuracy of detecting ringing artefact on first type of magnetic resonance slice was 98 %, on second type 93 % and on third 98 %. All AUC values showing the quality of our build detection model, are above value 0,98. Discussion and conclusion: The accuracy of our build model can be compared with detection models in reviewed literature. There are no differences between models detecting different types of artefact or between models of detection algorithm using different type of pretrained convolutional neural network. Changing different scan parameters result in appearance of ringing artefact. Those parameters are matrix size, voxel size and number of averages. Phase encode direction does not affect on Gibbs artefact appearance. Automatic detection of artefacts on magnetic resonance images helps us to avoid the need for time-consuming manual review of images and it enables us to correct artefact with use of computer algorithms. With using automatic detection of artefact, we can ensure higher image quality of magnetic resonance imaging.
Sekundarne ključne besede: master's theses;radiologic technology;Gibbs artefact;MR image quality;deep learning;transfer learning;convolutional neural networks;
Vrsta dela (COBISS): Magistrsko delo/naloga
Študijski program: 0
Komentar na gradivo: Univ. v Ljubljani, Zdravstvena fak., Oddelek za radiološko tehnologijo
Strani: [39] str.
ID: 13140564