Felix Fritzsch (Avtor), Tomaž Prosen (Avtor)

Povzetek

The eigenstate thermalization hypothesis provides to date the most successful description of thermalization in isolated quantum systems by conjecturing statistical properties of matrix elements of typical operators in the (quasi)energy eigenbasis. Here we study the distribution of matrix elements for a class of operators in dual-unitary quantum circuits in dependence of the frequency associated with the corresponding eigenstates. We provide an exact asymptotic expression for the spectral function, i.e., the second moment of this frequency resolved distribution. The latter is obtained from the decay of dynamical correlations between local operators which can be computed exactly from the elementary building blocks of the dual-unitary circuits. Comparing the asymptotic expression with results obtained by exact diagonalization we find excellent agreement. Small fluctuations at finite system size are explicitly related to dynamical correlations at intermediate times and the deviations from their asymptotical dynamics. Moreover, we confirm the expected Gaussian distribution of the matrix elements by computing higher moments numerically.

Ključne besede

statistična fizika;kvantna mehanika;statistical physics;quantum mechanics;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 536.93
COBISS: 76186115 Povezava se bo odprla v novem oknu
ISSN: 2470-0045
Št. ogledov: 159
Št. prenosov: 112
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: statistična fizika;kvantna mehanika;
Strani: str. 062133-1-062133-14
Letnik: ǂVol. ǂ103
Zvezek: ǂiss. ǂ6
Čas izdaje: 2021
DOI: 10.1103/PhysRevE.103.062133
ID: 13394692