magistrsko delo
Aleš Zamuda (Avtor), Janez Brest (Mentor)

Povzetek

Predstavljamo nov algoritem diferencialne evolucije za večkriterijsko optimizacijo, ki ga krmili samoprilagoditveni mehanizem, predstavljen v evolucijskih strategijah. Posebej se posvetimo načrtu algoritma, tj. matematično formalnemu zapisu glavnih sestavnih delov algoritma in medsebojni povezavi teh delov. Potek algoritma opišemo s psevdokodom. Sklepamo na časovno zahtevnost algoritma in podamo nekaj empiričnih meritev, da bi jo potrdili. Posebej preučimo tudi dinamiko samo-prilagajanja krmilnih parametrov. Navedemo sodobne testne probleme in indikatorje kakovosti iz literature za oceno zmogljivosti večkriterijskih optimizacijskih algoritmov. S pomočjo teh dobimo ocene zmogljivosti algoritma, ki pokažejo številna statistično signifikantna izboljšanja. Dobljene rezultate našega algoritma primerjamo tudi s sorodnimi algoritmi in na empiričnih rezultatih pokažemo, kje je algoritem statistično signifikantno boljši.

Ključne besede

evolucijski algoritmi;diferencialna evolucija;samoprilagajanje krmilnih parametrov;večkriterijska optimizacija;

Podatki

Jezik: Slovenski jezik
Leto izida:
Izvor: Maribor
Tipologija: 2.09 - Magistrsko delo
Organizacija: UM FERI - Fakulteta za elektrotehniko, računalništvo in informatiko
Založnik: [A. Zamuda]
UDK: 519.8:004.8
COBISS: 12461846 Povezava se bo odprla v novem oknu
Št. ogledov: 4045
Št. prenosov: 360
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Self-adaptation of control parameters in differential evolution for multiobjective optimization algorithm
Sekundarni povzetek: We present a new differential evolution algorithm for multiobjective optimization controlled by the self-adaptation mechanism introduced in evolution stategies. Algorithm design is presented with mathematically formal notation of algorithm's main parts and their assembly. The algorithm is described using a pseudocode. Computational complexity of the algorithm is given and some empirical measurement are given for evidence. Self-adaptation dynamics of control parameters is also studied. State of the art test problems and quality indicators from literature for performance assessment of multiobjective optimization algorithms are listed. Using these, performance assessments of the algorithm are obtained showing numerous statistically significant improvements. Obtained results with the algorithm are also compared with related algorithms and statistically significant differences of the compared algorithms are pointed out on empirical results.
Sekundarne ključne besede: evolutionary algorithms;differential evolution;control parameters self-adaptation;multiobjective optimization;
URN: URN:SI:UM:
Vrsta dela (COBISS): Magistrsko delo
Komentar na gradivo: Univ. v Mariboru, Fak. za elektrotehniko, računalništvo in informatiko
Strani: XVI, 112 str.
Ključne besede (UDK): mathematics;natural sciences;naravoslovne vede;matematika;mathematics;matematika;operational research (or): mathematical theories and methods;operacijsko raziskovanje;science and knowledge;organization;computer science;information;documentation;librarianship;institutions;publications;znanost in znanje;organizacije;informacije;dokumentacija;bibliotekarstvo;institucije;publikacije;prolegomena;fundamentals of knowledge and culture;propaedeutics;prolegomena;splošne osnove znanosti in kulture;computer science and technology;computing;data processing;računalniška znanost in tehnologija;računalništvo;obdelava podatkov;artificial intelligence;umetna inteligenca;
ID: 13726
Priporočena dela:
, diplomsko delo univerzitetnega študijskega programa
, data collection and parallel corpus compilation for machine translation of subtitles
, diplomsko delo
, ni podatka o podnaslovu