Povzetek

This paper explains liquefied nitrogen’s cooling ability on a nickel super alloy called Inconel 718. A set of experiments was performed where the Inconel 718 plate was cooled by a moving liquefied nitrogen nozzle with changing the input parameters. Based on the experimental data, the empirical model was designed by an adaptive neuro-fuzzy inference system (ANFIS) and optimized with the particle swarm optimization algorithm (PSO), with the aim to predict the cooling rate (temperature) of the used media. The research has shown that the velocity of the nozzle has a significant impact on its cooling ability, among other factors such as depth and distance. Conducted experimental results were used as a learning set for the ANFIS model’s construction and validated via k-fold cross-validation. Optimization of the ANFIS’s external input parameters was also performed with the particle swarm optimization algorithm. The best results achieved by the optimized ANFIS structure had test root mean squared error (test RMSE) = 0.2620, and test R$^2$ = 0.8585, proving the high modeling ability of the proposed method. The completed research contributes to knowledge of the field of defining liquefied nitrogen’s cooling ability, which has an impact on the surface characteristics of the machined parts.

Ključne besede

kriogeno odrezavanje;hlajenje;strojno učenje;adaptivne mreže na osnovi mehkega identifikacijskega sistema;optimizacija z rojem delcev;cryogenic machining;cooling impact;Inconel 718;machine learning;adaptive neuro-fuzzy inference system;particle swarm optimization;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UM FS - Fakulteta za strojništvo
UDK: 621.7+621.9:004.89
COBISS: 16781315 Povezava se bo odprla v novem oknu
ISSN: 2076-3417
Št. ogledov: 168
Št. prenosov: 75
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: kriogeno odrezavanje;hlajenje;strojno učenje;adaptivne mreže na osnovi mehkega identifikacijskega sistema;optimizacija z rojem delcev;
Vrsta dela (COBISS): Članek v reviji
Strani: str. 1-16
Letnik: ǂVol. ǂ10
Zvezek: ǂiss. ǂ10
Čas izdaje: May 2020
DOI: 10.3390/app10103603
ID: 14010172