Povzetek
In this article a notion of stochastic flow associated to stochastic preference is introduced. It is proved that stochastic flow is a consistent flow if and only if stochastic preference is consistent. If both of them are consistent, the flow and the stochastic preference, then, the normal integral of the flow is the logarithm of value function associated to stochastic preference flow. This means that normal integral of stochastic preference flow, which always exists, can be considered as a generalization of ordinal value function in that context. It is also proved that if flow preference is aweak preference order, then, normal integral of unimodular stochastic flow isa value function. This approach is applied to the data obtained from a web questionnaire when students were asked to give preference flows for certain criteria over the set of their lecturers. In that case the stochastic flow andthe group flow generate equivalent ranking. Finally, we calculated the Condorcetćs flow and Savagećs value function associated to its unimodular flow. The ranking obtained from Condorcetćs flow is not equivalent to ranking obtained from stochastic flow. In this article we show that stochastic flow and group flow from ¡Caklovi c (2003b) generate equivalent ranking (see Tables2 and 3). That means that in situations when only rating is the aim of the experiment one can organize a questionnaire to collect data only for stochastic flow, i.e. using the scale -1 , 0 , 1. This is less time consuming than giving strength of a preference for each pair of alternatives.
Ključne besede
Statistične metode;
Podatki
Jezik: |
Angleški jezik |
Leto izida: |
2005 |
Tipologija: |
1.01 - Izvirni znanstveni članek |
Organizacija: |
UL FDV - Fakulteta za družbene vede |
Založnik: |
Fakulteta za družbene vede |
UDK: |
311 |
COBISS: |
24324957
|
ISSN: |
1854-0023 |
Št. ogledov: |
581 |
Št. prenosov: |
35 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Neznan jezik |
Sekundarne ključne besede: |
Statistical methods; |
URN: |
URN:NBN:SI |
Vrsta dela (COBISS): |
Delo ni kategorizirano |
Strani: |
str. 125-134 |
Letnik: |
ǂVol. ǂ2 |
Zvezek: |
ǂno. ǂ1 |
Čas izdaje: |
2005 |
Ključne besede (UDK): |
social sciences;družbene vede;statistics as a science;statistical theory;statistika;statistična teorija; |
ID: |
1467984 |