Povzetek
Širan constructed infinite families of ▫$k$▫-crossing-critical graphs for every ▫$k \ge 3$▫ and Kochol constructed such families of simple graphs for every ▫$k \ge 2$▫. Richter and Thomassen argued that, for any given ▫$k \ge 1$▫ and ▫$r \ge 6$▫, there are only finitely many simple ▫$k$▫-crossing-critical graphs with minimum degree ▫$r$▫. Salazar observed that the same argument implies such a conclusion for simple ▫$k$▫-crossing-critical graphs of prescribed average degree ▫$r > 6$▫. He established existence of infinite families of simple ▫$k$▫-crossing-critical graphs with any prescribed rational average degree ▫$r \in [4,6)$▫ for infinitely many ▫$k$▫ and asked about their existence for ▫$r \in (3,4)$▫. The question was partially settled by Pinontoan and Richter, who answered it positively for ▫$r \in (3\frac{1}{2},4)$▫. The present contribution uses two new constructions of crossing critical simple graphs along with the one developed by Pinontoan and Richter to unify these results and to answer Salazar's question by the following statement: for every rational number ▫$r \in (3,6)$▫ there exists an integer ▫$N_r$▫, such that, for any ▫$k > N_r$▫, there exists an infinite family of simple 3-connected crossing-critical graphs with average degree ▫$r$▫ and crossing number ▫$k$▫. Moreover, a universal lower bound on ▫$k$▫ applies for rational numbers in any closed interval ▫$I \subset (3,6)$▫.
Ključne besede
matematika;teorija grafov;prekrižno število;kritičen graf;prekrižno-kritičen graf;povprečna stopnja;mathematics;graph theory;crossing number;critical graph;crossing-critical graph;average degree;graph;
Podatki
Jezik: |
Angleški jezik |
Leto izida: |
2010 |
Tipologija: |
1.01 - Izvirni znanstveni članek |
Organizacija: |
UM FNM - Fakulteta za naravoslovje in matematiko |
UDK: |
519.17 |
COBISS: |
15438169
|
ISSN: |
0364-9024 |
Št. ogledov: |
48 |
Št. prenosov: |
18 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Angleški jezik |
Sekundarne ključne besede: |
matematika;teorija grafov;prekrižno število;kritičen graf;prekrižno-kritičen graf;povprečna stopnja; |
Vrsta dela (COBISS): |
Delo ni kategorizirano |
Strani: |
str. 139-162 |
Letnik: |
ǂVol. ǂ65 |
Zvezek: |
ǂiss. ǂ2 |
Čas izdaje: |
2010 |
DOI: |
10.1002/jgt.20470 |
ID: |
1474841 |