Povzetek

The Fibonacci dimension ▫$\text{fdim}(G)$▫ of a graph ▫$G$▫ was introduced [in S. Cabello, D. Eppstein, S. Klavžar, The Fibonacci dimension of a graph Electron. J. Combin., 18 (2011) P 55, 23 pp] as the smallest integer ▫$d$▫ such that ▫$G$▫ admits an isometric embedding into ▫$\Gamma_d$▫, the ▫$d$▫-dimensional Fibonacci cube. The Fibonacci dimension of the resonance graphs of catacondensed benzenoid systems is studied. This study is inspired by the fact, that the Fibonacci cubes are precisely the resonance graphs of a subclass of the catacondensed benzenoid systems. Our results show that the Fibonacci dimension of the resonance graph of a catacondensed benzenoid system ▫$G$▫ depends on the inner dual of ▫$G$▫. Moreover, we show that computing the Fibonacci dimension can be done in linear time for a graph of this class.

Ključne besede

Fibonaccijeva dimenzija;benzenoidni sistemi;resonančni grafi;algoritem;Fibonacci dimension;benzenoid systems;resonance graphs;algorithm;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UM FNM - Fakulteta za naravoslovje in matematiko
UDK: 519.17
COBISS: 19832840 Povezava se bo odprla v novem oknu
ISSN: 0166-218X
Št. ogledov: 327
Št. prenosov: 23
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
URN: URN:SI:UM:
Vrsta dela (COBISS): Delo ni kategorizirano
Strani: str. 2158-2168
Letnik: Vol. 161
Zvezek: issue 13-14
Čas izdaje: 2013
ID: 1477047