ǂa ǂ novel approach

Povzetek

Since the outbreak of the pandemic Coronavirus Disease 2019, the world is in search of novel non-invasive methods for safer and early detection of lung diseases. The pulmonary pathological symptoms refected through the lung sound opens a possibility of detection through auscultation and of employing spectral, fractal, nonlinear time series and principal component analyses. Thirty-fve signals of vesicular and expiratory wheezing breath sound, subjected to spectral analyses shows a clear distinction in terms of time duration, intensity, and the number of frequency components. An investigation of the dynamics of air molecules during respiration using phase portrait, Lyapunov exponent, sample entropy, fractal dimension, and Hurst exponent helps in understanding the degree of complexity arising due to the presence of mucus secretions and constrictions in the respiratory airways. The feature extraction of the power spectral density data and the application of principal component analysis helps in distinguishing vesicular and expiratory wheezing and thereby, giving a ray of hope in accomplishing an early detection of pulmonary diseases through sound signal analysis.

Ključne besede

auscultation;wheeze;fractals;nonlinear time series analysis;sample entropy;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UNG - Univerza v Novi Gorici
UDK: 53
COBISS: 113308675 Povezava se bo odprla v novem oknu
ISSN: 2662-4729
Št. ogledov: 511
Št. prenosov: 0
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

URN: URN:SI:UNG
Strani: str. 1339–1347
Letnik: ǂVol. ǂ43
Zvezek: ǂiss. ǂ4
Čas izdaje: 2020
DOI: 10.1007/s13246-020-00937-5
ID: 15786685