diplomsko delo

Povzetek

Družbena omrežja omogočajo prosto javno izražanje političnih mnenj uporabnikov, ki zagovarjajo različna stališča glede aktualnih političnih vprašanj. V diplomski nalogi smo analizirali politično usmerjenost oziroma pristranskost slovenskih uporabnikov na podlagi njihovih objav na družbenem omrežju Twitter. Pri tem smo uporabili metode za obdelavo naravnega jezika. Z uporabo algoritma BERTopic smo poiskali in iz podatkovne množice izluščili različne politično družbene teme in jih uporabili pri analizi sentimenta za klasifikacijo politične usmerjenosti (levo, desno, nevtralno). Opazimo precejšen delež negativnega sentimenta do vseh tem in strank. Količina levo in desno usmerjenih tvitov v političnih temah obeh polov je približno enaka. Zaznamo, da v tvitih po priljubljenosti najbolj izstopata dve stranki, vsaka iz nasprotnega političnega pola.

Ključne besede

BERT;BERTopic;SloBERTa;politična mnenja;Twitter;analiza sentimenta;univerzitetni študij;diplomske naloge;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FRI - Fakulteta za računalništvo in informatiko
Založnik: [M. Korelič]
UDK: 004.8:81'322.2(043.2)
COBISS: 129873411 Povezava se bo odprla v novem oknu
Št. ogledov: 51
Št. prenosov: 19
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Analysis of topical political stance of Slovene tweets
Sekundarni povzetek: Social networks allow free public expression of users' political opinions, advocating various views on the current political agenda. In the thesis, we analyzed the political orientation of Slovene users' posts on the Twitter social network. We used the BERTopic algorithm to find and extract political topics from the data and applied sentiment analysis to classify political orientation (left, right and neutral). The results show a significant proportion of negative sentiment towards all topics and parties. The amount of left- and right-leaning tweets on general political topics is approximately equal. We notice that two parties from opposite political poles stand out in tweet popularity.
Sekundarne ključne besede: natural language processing;BERT;BERTopic;SloBERTa;political opinions;Twitter;sentiment analysis;Obdelava naravnega jezika (računalništvo);Računalniško jezikoslovje;Družbena omrežja (internet);Politične vede;Računalništvo;Univerzitetna in visokošolska dela;
Vrsta dela (COBISS): Diplomsko delo/naloga
Študijski program: 1000468
Konec prepovedi (OpenAIRE): 1970-01-01
Komentar na gradivo: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Strani: 57 str.
ID: 17052824