magistrsko delo
Povzetek
Prepustnost celične membrane lahko povečamo z elektroporacijo. To storimo z dovajanjem kratkih visokonapetostnih pulzov. V izogib visokim napetostim pulzov lahko dodamo v okolico celice nanodelce, ki delujejo kot nanoelektrode. Nanodelci lokalno ojačajo električno polje in posledično izboljšajo prepustnost celične membrane.
V okviru magistrskega dela smo zgradili 2D model celice, ob katero smo dodali nanodelec. Celica se je tekom simulacije ves čas nahajala v statičnem električnem polju. Zanimal nas je vpliv nanodelca na povečanje transmembranske napetosti in električnega polja, zato smo mu spreminjali material, obliko, velikost in položaj okrog membrane. Poleg tega smo preverili medsebojni vpliv dveh nanodelcev na različni medsebojni oddaljenosti. Za poustvaritev bolj realnih razmer se je opravila simulacija z večjim številom nanodelcev. Na koncu smo za primerjavo z 2D modelom zgradili še 3D model. Cilj je bil najti parametre nanodelca, ki imajo na opazovane veličine največji učinek. Reševanje opisanega problema smo reševali z metodo končnih elementov.
Najboljši učinek na povečanje električnega polja in transmembranske napetosti je pri 2D simulacijah pokazal neprevoden nanodelec. Za večje povečanje opazovanih parametrov so poskrbeli bolj koničasti in večji delci. Za boljši učinek mora biti lokacija nanodelca čim bližje celični membrani, predvsem na delih, ki niso obrnjeni proti elektrodam. Večje število nanodelcev poskrbi za večje povečanje transmembranske napetosti in električnega polja. Pozitiven medsebojni vpliv je najbolj opazen pri prevodnih nanodelcih. Simulacije v 3D prostoru so pokazale, da je dimenzija simulacije parameter, ki močno vpliva na rezultate. Če smo na podlagi 2D simulacij sklepali, da ima neprevodni nanodelec večji vpliv na transmembransko napetost, so 3D simulacije pokazale obratno.
Ključne besede
nanodelci;celice;metoda končnih elementov;transmembranska napetost;elektroporacija;električno polje;magisteriji;
Podatki
Jezik: |
Slovenski jezik |
Leto izida: |
2022 |
Tipologija: |
2.09 - Magistrsko delo |
Organizacija: |
UL FE - Fakulteta za elektrotehniko |
Založnik: |
[M. Blažič] |
UDK: |
602.621:621.3(043.2) |
COBISS: |
134851075
|
Št. ogledov: |
16 |
Št. prenosov: |
5 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Angleški jezik |
Sekundarni naslov: |
The effect of nanoparticles on the increase of electric field and transmembrane voltage |
Sekundarni povzetek: |
The permeability of the cell membrane can be increased by electroporation. This is done by delivering short pulses of high voltage near the cell. Nanoparticles are added to the cell surroundings to act as nanoelectrodes. As a result, high voltage pulses are not needed. Nanoparticles locally amplify the electric field and consequently improve the permeability of the cell membrane.
A 2D model of the cell was built and the nanoparticle was added next to it. The cell was kept in a static electric field throughout the simulation. We were interested in what effect the nanoparticle has on increasing the transmembrane voltage and the electric field. We varied a number of parameters of the nanoparticle: material, shape, size and position. The interaction between two nanoparticles at different distances from each other was also tested. To recreate a more realistic situation, a simulation with a larger number of nanoparticles was performed. Finally, a 3D model was built for comparison with the 2D model. The aim was to find the parameters of the nanoparticle that have the largest effect on the observed quantities. The problem was solved using the finite element method.
The best effect on the increase of electric field and transmembrane voltage in 2D simulations was shown by a non-conducting nanoparticle. The larger and more pointed particles caused the larger increase in the observed quantities. For a better effect, the nanoparticle should be located as close as possible to the cell membrane, especially on the parts not facing the electrodes. A larger number of nanoparticles provides a larger increase in transmembrane voltage and electric field. The positive interaction between particles is most noticeable for conductive nanoparticles. Simulations in 3D have shown that the simulation dimension is a parameter that strongly influences the results. While 2D simulations suggested that a non-conducting nanoparticle has a greater influence on the transmembrane voltage, 3D simulations showed the opposite. |
Sekundarne ključne besede: |
nanoparticles;cell;finite element method;transmembrane voltage;electroporation;electric field; |
Vrsta dela (COBISS): |
Magistrsko delo/naloga |
Študijski program: |
1000316 |
Konec prepovedi (OpenAIRE): |
1970-01-01 |
Komentar na gradivo: |
Univ. v Ljubljani, Fak. za elektrotehniko |
Strani: |
XXII, 71 str. |
ID: |
17469765 |