diplomsko delo
Povzetek
Diplomsko delo govori predvsem o homogenih markovskih verigah in njihovi konvergenci k stacionarni porazdelitvi. V začetnem poglavju je omenjenih nekaj nazornih primerov uporabe in osnovne informacije o homogenih markovskih verigah, kot so stohastični procesi, matrike prehoda, različna stanja, stacionarna porazdelite, ergodičnost ... Sledijo definicije in uporabni rezultati s področja lastnih vrednosti in lastnih vektorjev. Uvodni del zaključuje pomemben izrek o konvergenci k stacionarni porazdelitvi homogene markovske verige. V nadaljevanju sledi formulacija Perron-Frobeniusovega izreka, uporaba lastne strukture matrike prehoda ergodične homogene markovske verige v končnem prostoru stanj pri določanju hitrosti konvergence k stacionarni porazdelitvi, ki pa je enaka po absolutni vrednosti drugi največji lastni vrednosti in nekateri načini določanja njene spodnje in zgornje meje. V zadnjem poglavju pa se soočimo s kompleksnejšim konceptom, in sicer nehomogenimi markovskimi verigami in pogoji za določitev krepke in šibke ergodičnosti.
Ključne besede
matematika;markovske verige;ergodičnost;porazdelitve;diplomska dela;
Podatki
Jezik: |
Slovenski jezik |
Leto izida: |
2009 |
Izvor: |
Maribor |
Tipologija: |
2.11 - Diplomsko delo |
Organizacija: |
UM FNM - Fakulteta za naravoslovje in matematiko |
Založnik: |
[J. Karo] |
UDK: |
51 |
COBISS: |
17183752
|
Št. ogledov: |
2724 |
Št. prenosov: |
310 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Angleški jezik |
Sekundarni naslov: |
EINGENVALUES AND NONHOMOGENEOUS MARKOV CHAINS |
Sekundarni povzetek: |
This paper presents homogeneous Markov chains and their convergence to steady state. In initial chapter are written a few evidental examples of use homogeneous Markov chain and given some basic informations about homogeneous Markov chain, for example stochastic process, transition matrix, diversity states, stationary distribution, ergodicity ... The definitions and useful results of eigevaleus and eigevectors are discribed in following chapter. Introduction part of this paper is concluded with an important theorem of convergence to stady state. In following text we can find formulation of Perron-Frobenius theorem, way of use eigenstructure transition matrix ergodic finite state space homogeneous Markov chain to define relative speed to stationary distribution. The relative speed to stationary distribution is equal to the secondlargest eigenvalue modulus. In continuing text there are decribed some ways of defining lower and upper bound of second-largest eigenvalue modulus. In final chapter we confront with complex concept, with nonhomogeneous markov chains and conditions to define strong and weak ergodicity of nonhomogeneous Markov chains. |
Sekundarne ključne besede: |
Homogeneous markov chain;nonhomogeneous markov chain;Perron-Frobenius theorem;stationary distribution;ergodicity.; |
URN: |
URN:SI:UM: |
Vrsta dela (COBISS): |
Diplomsko delo |
Komentar na gradivo: |
Univ. v Mariboru, Fak. za naravoslovje in matematiko, Oddelek za matematiko in računalništvo |
Strani: |
VIII, 61 f. |
Ključne besede (UDK): |
mathematics;natural sciences;naravoslovne vede;matematika;mathematics;matematika; |
ID: |
18089 |