diplomsko delo
Gorazd Gorup (Avtor), Matija Marolt (Mentor), Žiga Lesar (Komentor)

Povzetek

V diplomski nalogi se lotevamo problema samodejnega generiranja prenosnih funkcij za poljubne volumetrične podatke. Proučimo dva pristopa z uporabo strojnega učenja. Prvi pristop vključuje pridobivanje učnih podatkov na podlagi človeške klasifikacije dobrih prenosnih funkcij. Na vhod nevronske mreže podamo volumetrične podatke, izhode pa primerjamo z ugodnimi prenosnimi funkcijami iz učnih podatkov. Drugi pristop obsega računalniško generiranje volumnov in klasificiranje značilnosti v njih. Med učenjem nevronske mreže vizualiziramo volumne z generiranimi prenosnimi funkcijami in učenje usmerjamo s štetjem ustrezno vidnih značilnosti na vizualizacijah. Pristopa primerjamo po uspešnosti in kakovosti generiranih prenosnih funkcij. Prvi pristop trpi zaradi pomanjkanja učnih podatkov in posledičnega pretiranega prileganja, z drugim pristopom pa ni mogoče izvesti učenja, saj cenilna funkcija ni odvedljiva.

Ključne besede

grafika;volumetrični podatki;prenosne funkcije;VPT;strojno učenje;nevronske mreže;računalništvo in informatika;univerzitetni študij;diplomske naloge;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FRI - Fakulteta za računalništvo in informatiko
Založnik: [G. Gorup]
UDK: 004.8(043.2)
COBISS: 150448131 Povezava se bo odprla v novem oknu
Št. ogledov: 13
Št. prenosov: 6
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Interactive discovery of volumetric data through the use of transfer function galleries
Sekundarni povzetek: In this thesis, we tackle the problem of automatic transfer function generation for volumetric data rendering. We study two methods using machine learning techniques. The first method involves gathering training data through suitable transfer function selection and classification by human users. We use these training transfer functions to optimize a generative neural network. With the second method we take an automated approach of generating volumetric data and labelling generated features, then training neural network by rendering volumes with generated transfer functions, and comparing the feature visibility on visualizations with expected render output. We compare both methods based on learning success and quality of generated transfer functions. The first method suffers from over-fitting due to small amount of training data, while with the second method we show that the training of the network cannot be performed using gradient descent method.
Sekundarne ključne besede: graphics;volumetric data;transfer functions;VPT;machine learning;neural networks;computer science;computer and information science;diploma;
Vrsta dela (COBISS): Diplomsko delo/naloga
Študijski program: 1000468
Komentar na gradivo: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Strani: 81 str.
ID: 18712105