diplomsko delo
Povzetek
V uvodu bomo spoznali pojme, ki so bistveni za razumevanje diplomskega dela. Tako se bomo seznanili z definicijo števne množice, izvedeli nekaj o grafih in drevesih, spoznali metodi iskanja v neskončnih drevesih, predstavljena pa je tudi rekurzija oz. rekurzivna zveza. V poglavju Preštevanje racionalnih števil bomo spoznali načine, s katerimi lahko dokažemo števnost racionalnih števil. To so: osnovni zgled, Calkin - Wilfovo drevo, preštevanje racionalnih števil s pomočjo največjega skupnega delitelja in s pomočjo razcepa na prafaktorje.
Ključne besede
matematika;racionalna števila;preštevanje;grafi;skupni delitelj;diplomska dela;
Podatki
Jezik: |
Slovenski jezik |
Leto izida: |
2010 |
Izvor: |
Maribor |
Tipologija: |
2.11 - Diplomsko delo |
Organizacija: |
UM FNM - Fakulteta za naravoslovje in matematiko |
Založnik: |
[N. Konec] |
UDK: |
51(043.2) |
COBISS: |
17833736
|
Št. ogledov: |
2102 |
Št. prenosov: |
108 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Angleški jezik |
Sekundarni naslov: |
Counting the rationals |
Sekundarni povzetek: |
In the beginning we will present the terms that are crucial for the understanding of this diploma thesis. We will present the definition of a countable set, explain graphs and trees and show two methods of searching within the infinite trees. We will also define recursion which is also called the recursive connection. In the chapter Counting the rationals we will show different proofs showing that rationals are countable. These are: the basic example, Calkin-Wilf tree, counting the rationals with the help of the greatest common divisor and with the help of splitting the numbers on primes. |
Sekundarne ključne besede: |
Rationals;graph;Calkin-Wilf tree;greatest common divisor.; |
URN: |
URN:SI:UM: |
Vrsta dela (COBISS): |
Diplomsko delo |
Komentar na gradivo: |
Univ. v Mariboru, Fak. za naravoslovje in matematiko, Oddelek za matematiko in računalništvo |
Strani: |
48 f. |
Ključne besede (UDK): |
mathematics;natural sciences;naravoslovne vede;matematika;mathematics;matematika; |
ID: |
18745 |