diplomsko delo
Povzetek
V diplomskem delu je obravnavan problem razcepljenosti bikvadratnih polinomov s celoštevilskimi koeficienti. V prvem poglavju so predstavljeni pojmi in rezultati s področja teorije kongruenc, ki so potrebni za nadaljnjo obravnavo. V drugem poglavju so vpeljani pojmi in rezultati s področja polinomov z racionalnimi koeficienti, v tretjem poglavju pa polinomske kongruence na množici vseh polinomov s celoštevilskimi koeficienti. Osrednji del diplomskega dela je namenjen obravnavi bikvadratnih polinomov, ki so nerazcepni v Z[x], vendar so razcepni po modulu p za vsako praštevilo p. V zadnjem poglavju so obravnavani taki nerazcepni bikvadratni polinomi, ki so razcepni po modulu n za vsako naravno število n > 1.
Ključne besede
matematika;polinomi;bikvadratni polinomi;kongruenca;diplomska dela;
Podatki
Jezik: |
Slovenski jezik |
Leto izida: |
2010 |
Izvor: |
Maribor |
Tipologija: |
2.11 - Diplomsko delo |
Organizacija: |
UM FNM - Fakulteta za naravoslovje in matematiko |
Založnik: |
[J. Kline] |
UDK: |
51(043.2) |
COBISS: |
17982984
|
Št. ogledov: |
1871 |
Št. prenosov: |
174 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Angleški jezik |
Sekundarni naslov: |
IRREDUCIBLE BIQUADRATIC POLYNOMALS WITH FACTORIZATIONS MODULO p |
Sekundarni povzetek: |
The graduation thesis discusses a problem of irreducible biquadratic polynomials with integer coefficients. In the first chapter the theory of congruences is introduced. The second chapter is devoted to the theory of polynomials with rational coefficients. Next, we consider polynomial congruences on the set of all polynomials with integer coefficients. The main part of the thesis deals with biquadratic polynomials which are irreducible in Z[x], but reducible modulo p for every prime number p. In the last chapter we consider irreducible biquadratic polynomials that are reducible modulo n for every integer n > 1. |
Sekundarne ključne besede: |
biquadratic polynomial;congruence;polynomial;quadratic residue;Legendre symbol; |
URN: |
URN:SI:UM: |
Vrsta dela (COBISS): |
Diplomsko delo |
Komentar na gradivo: |
Univ. v Mariboru, Fak. za naravoslovje in matematiko, Oddelek za matematiko in računalništvo |
Strani: |
IX, 49 f. |
Ključne besede (UDK): |
mathematics;natural sciences;naravoslovne vede;matematika;mathematics;matematika; |
ID: |
18912 |