Umut Arioz (Avtor), Urška Smrke (Avtor), Nejc Plohl (Avtor), Izidor Mlakar (Avtor)

Povzetek

Depression is a prevalent comorbidity in patients with severe physical disorders, such as cancer, stroke, and coronary diseases. Although it can significantly impact the course of the primary disease, the signs of depression are often underestimated and overlooked. The aim of this paper was to review algorithms for the automatic, uniform, and multimodal classification of signs of depression from human conversations and to evaluate their accuracy. For the scoping review, the PRISMA guidelines for scoping reviews were followed. In the scoping review, the search yielded 1095 papers, out of which 20 papers (8.26%) included more than two modalities, and 3 of those papers provided codes. Within the scope of this review, supported vector machine (SVM), random forest (RF), and long short-term memory network (LSTM; with gated and non-gated recurrent units) models, as well as different combinations of features, were identified as the most widely researched techniques. We tested the models using the DAIC-WOZ dataset (original training dataset) and using the SymptomMedia dataset to further assess their reliability and dependency on the nature of the training datasets. The best performance was obtained by the LSTM with gated recurrent units (F1-score of 0.64 for the DAIC-WOZ dataset). However, with a drop to an F1-score of 0.56 for the SymptomMedia dataset, the method also appears to be the most data-dependent.

Ključne besede

multimodalna klasifikacija;pregled;realni podatki;psihično zdravje;ne zaključna dela;multimodal depression classification;scoping review;real-world data;mental health;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.02 - Pregledni znanstveni članek
Organizacija: UM FERI - Fakulteta za elektrotehniko, računalništvo in informatiko
UDK: 159.92
COBISS: 128320003 Povezava se bo odprla v novem oknu
ISSN: 2075-4418
Št. ogledov: 369
Št. prenosov: 31
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: Depresija (psihologija);Duševno zdravje;
Vrsta dela (COBISS): Članek v reviji
Strani: 26 str.
Letnik: ǂVol. ǂ12
Zvezek: ǂiss. ǂ11
Čas izdaje: 2022
DOI: 10.3390/diagnostics12112683
ID: 19782090
Priporočena dela:
, ni podatka o podnaslovu
, analysis of two repeated cross-sectional surveys in 2020 and 2021
, družbeni profil mladih v Sloveniji