Gregor Koporec (Avtor), Janez Perš (Avtor)

Povzetek

Despite their powerful discriminative abilities, Convolutional Neural Networks (CNNs) lack the properties of generative models. This leads to a decreased performance in environments where objects are poorly visible. Solving such a problem by adding more training samples can quickly lead to a combinatorial explosion, therefore the underlying architecture has to be changed instead. This work proposes a Human-Centered Deep Compositional model (HCDC) that combines low-level visual discrimination of a CNN and the high-level reasoning of a Hierarchical Compositional model (HCM). Defined as a transparent model, it can be optimized to real-world environments by adding compactly encoded domain knowledge from human studies and physical laws. The new FridgeNetv2 dataset and a mixture of publicly available datasets are used as a benchmark. The experimental results show the proposed model is explainable, has higher discriminative and generative power, and better handles the occlusion than the current state-of-the-art Mask-RCNN in instance segmentation tasks.

Ključne besede

računalniški vid;globoko učenje;konvolucijske nevronske mreže;hierarhični kompozicionalni model;zakrivanje;interpretabilnost;poznavanje področja;computer vision;deep learning;convolutional neural networks;hierarchical compositonal model;occlusion;discriminability;generalizability;interpretability;domain knowledge;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FE - Fakulteta za elektrotehniko
UDK: 004
COBISS: 142438403 Povezava se bo odprla v novem oknu
ISSN: 0031-3203
Št. ogledov: 18
Št. prenosov: 5
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: računalniški vid;globoko učenje;konvolucijske nevronske mreže;hierarhični kompozicionalni model;zakrivanje;interpretabilnost;poznavanje področja;
Vrsta dela (COBISS): Članek v reviji
Strani: str. 1-14
Zvezek: ǂVol. ǂ138, [article no.] ǂ109397
Čas izdaje: 2023
DOI: 10.1016/j.patcog.2023.109397
ID: 19861989