T. Miener (Avtor), Saptashwa Bhattacharyya (Avtor), B. Marčun (Avtor), Judit Pérez Romero (Avtor), Samo Stanič (Avtor), Veronika Vodeb (Avtor), Serguei Vorobiov (Avtor), Gabrijela Zaharijas (Avtor), Marko Zavrtanik (Avtor), Danilo Zavrtanik (Avtor), Miha Živec (Avtor)

Povzetek

The Cherenkov Telescope Array (CTA), conceived as an array of tens of imaging atmospheric Cherenkov telescopes (IACTs), is an international project for a next-generation ground-based gamma-ray observatory, aiming to improve on the sensitivity of current-generation instruments a factor of five to ten and provide energy coverage from 20 GeV to more than 300 TeV. Arrays of IACTs probe the very-high-energy gamma-ray sky. Their working principle consists of the simultaneous observation of air showers initiated by the interaction of very-high-energy gamma rays and cosmic rays with the atmosphere. Cherenkov photons induced by a given shower are focused onto the camera plane of the telescopes in the array, producing a multi-stereoscopic record of the event. This image contains the longitudinal development of the air shower, together with its spatial, temporal, and calorimetric information. The properties of the originating very-high-energy particle (type, energy, and incoming direction) can be inferred from those images by reconstructing the full event using machine learning techniques. In this contribution, we present a purely deep-learning driven, full-event reconstruction of simulated, stereoscopic IACT events using CTLearn. CTLearn is a package that includes modules for loading and manipulating IACT data and for running deep learning models, using pixel-wise camera data as input.

Ključne besede

very-high-energy gamma-rays;Cherenkov Telescope Array;CTLearn;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.08 - Objavljeni znanstveni prispevek na konferenci
Organizacija: UNG - Univerza v Novi Gorici
UDK: 52
COBISS: 164781059 Povezava se bo odprla v novem oknu
ISSN: 1824-8039
Št. ogledov: 89
Št. prenosov: 2
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Delo ni kategorizirano
Strani: str. 1-15
Čas izdaje: 2022
ID: 19945502
Priporočena dela:
, ǂa ǂpotential PeVatron candidate for the CTA in the northern hemisphere
, ǂthe ǂworld’s largest VHE gamma-ray observatory
, layout, design and performance