I. Kharuk (Avtor),
R. U. Abbasi (Avtor),
T. Abu-Zayyad (Avtor),
M. Allen (Avtor),
Yasuhiko Arai (Avtor),
R. Arimura (Avtor),
E. Barcikowski (Avtor),
J. W. Belz (Avtor),
D. R. Bergman (Avtor),
S. A. Blake (Avtor),
J. P. Lundquist (Avtor)
Povzetek
We report on an improvement of deep learning techniques used for identifying primary particles of atmospheric air showers. The progress was achieved by using two neural networks. The first works as a classifier for individual events, while the second predicts fractions of elements in an ensemble of events based on the inference of the first network. For a fixed hadronic model, this approach yields an accuracy of 90% in identifying fractions of elements in an ensemble of events.
Ključne besede
Telescope Array;indirect detection;ground array;cosmic rays;surface detection;ultra-high energy;
Podatki
Jezik: |
Angleški jezik |
Leto izida: |
2022 |
Tipologija: |
1.08 - Objavljeni znanstveni prispevek na konferenci |
Organizacija: |
UNG - Univerza v Novi Gorici |
UDK: |
539.1 |
COBISS: |
166306563
|
ISSN: |
1824-8039 |
Št. ogledov: |
27 |
Št. prenosov: |
0 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Vrsta dela (COBISS): |
Delo ni kategorizirano |
Strani: |
str. 1-6 |
Čas izdaje: |
2022 |
DOI: |
10.22323/1.395.0384 |
ID: |
20010300 |