Denis Jankovič (Avtor), Marko Šimic (Avtor), Niko Herakovič (Avtor)

Povzetek

Improving overall performance and increasing operational reliability are currently among the leading research topics in the field of hydraulic systems. In recent years, the use of artificial intelligence-based modeling and design techniques has developed rapidly to account for the nonlinear properties of Gaussian systems and to predict fault reasoning in hydraulic systems. In this study, feature acquisition and selection are proposed to prepare input data for a simulation-based learning approach. In addition, a cause-and-effect analysis is performed by considering various what-if scenarios as external disturbances that affect the response of the hydraulic press. While the objective of the sheet metal bending cycle and a pulley system is to initiate a load on the hydraulic press, an intelligent sensing system is used to observe the behavior of the hydraulic press during the phases of sheet metal bending cycle, i.e., the forming, leveling, and movement. In addition, the Gaussian process regression method is used to build data-driven prediction models with different predictors that contribute significantly to improving predictive accuracy. The condition diagnosis indicates the accurate performance of predictive models observing the coefficient of determination R2 at 0.998 for the bending phase, 0.962 for the leveling phase, and 0.999 for the movement phase. Although the approximation of the simulation model is efficient, it is found that certain features are reasonably well approximated with regard to the forming phases.

Ključne besede

hydraulic system;artificial intelligence;Gaussian regression modeling;simulation-based learning;condition monitoring;cause and effect analysis;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FS - Fakulteta za strojništvo
UDK: 621.22:004.8
COBISS: 174551043 Povezava se bo odprla v novem oknu
ISSN: 1474-0346
Št. ogledov: 138
Št. prenosov: 29
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: hidravlični sistem;umetna inteligenca;Gaussovo regresijsko modeliranje;spremljanje stanja;simulacijsko učenje;analiza vzrokov in učinkov;
Vrsta dela (COBISS): Članek v reviji
Strani: str. 1-22
Zvezek: ǂVol. ǂ59
Čas izdaje: Jan. 2024
DOI: 10.1016/j.aei.2023.102276
ID: 21372103
Priporočena dela:
, diplomska naloga
, case study in maintenance cost estimation
, magistrsko delo magistrskega študijskega programa II. stopnje Strojništvo