Povzetek

Positive unlabeled learning is a binary classification problem with positive and unlabeled data. It is common in domains where negative labels are costly or impossible to obtain, e.g., medicine and personalized advertising. Most approaches to positive unlabeled learning apply to specific data types (e.g., images, categorical data) and can not generate new positive and negative samples. This work introduces a feature-space distance-based tensor network approach to the positive unlabeled learning problem. The presented method is not domain specific and significantly improves the state-of-the-art results on the MNIST image and 15 categorical/mixed datasets. The trained tensor network model is also a generative model and enables the generation of new positive and negative instances.

Ključne besede

pozitivno neoznačeno učenje;tenzorske mreže;matrično produktni nastavek;positive unlabeled learning;tensor networks;matrix product states;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FRI - Fakulteta za računalništvo in informatiko
UDK: 004
COBISS: 177078019 Povezava se bo odprla v novem oknu
ISSN: 0925-2312
Št. ogledov: 15
Št. prenosov: 4
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: pozitivno neoznačeno učenje;tenzorske mreže;matrično produktni nastavek;
Vrsta dela (COBISS): Članek v reviji
Strani: str. 1-11
Letnik: ǂVol. ǂ552
Zvezek: [article no.] 126556
Čas izdaje: Oct. 2023
DOI: 10.1016/j.neucom.2023.126556
ID: 21736159