diplomsko delo
Jan Kuhta (Avtor), Zoran Bosnić (Mentor)

Povzetek

V diplomskem delu smo združili področji računalniškega generiranja slik ter inkrementalnega učenja s poudarkom na zaznavanju spremembe učnega koncepta. Razvili smo inovativno metodo za zaznavanje sprememb v slikovnih podatkovnih tokovih, ki temelji na analizi izgub diskriminatorja znotraj zanke učenja generativnih nasprotniških mrež (GAN). Eksperimenti so pokazali, da se za naše namene najbolje obnese arhitektura Wasserstein GAN z gradientno kaznijo (WGAN-GP), ki smo jo uporabili v glavnem delu našega testiranja. Zasledili smo, da se ob ne\-nad\-nih spremembah porazdelitve vhodnih podatkov izguba diskriminatorja za določeno število iteracij strmo poveča po absolutni vrednosti. To specifično lastnost smo izkoristili pri razvoju metode Gan Loss Drift Detection (GLDD). Metodo smo temeljito testirali na slikovni množici MNIST digits, ki smo jo predhodno preoblikovali v deset različnih porazdelitev podatkov. Med poskusi se je posebej uspešna izkazala verzija GLDD-KSWIN, ki je dosegla povprečno natančnost 0.79, občutljivost 0.90, F1-oceno 0.84 in zamik zaznave 41.64. Rezultati kažejo, da je predlagana metoda obetaven temelj za nadaljnje raziskave na tem področju, ki še vedno ostaja precej nedotaknjeno in polno izzivov.

Ključne besede

strojno učenje;sprememba koncepta;generativne nasprotniške mreže;inkrementalno učenje;univerzitetni študij;diplomske naloge;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FRI - Fakulteta za računalništvo in informatiko
Založnik: [J. Kuhta]
UDK: 004.85(043.2)
COBISS: 188026883 Povezava se bo odprla v novem oknu
Št. ogledov: 27
Št. prenosov: 5
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Concept drift detection in incremental learning of generative adversarial networks
Sekundarni povzetek: In this thesis, we combined the fields of computational image generation and incremental learning, with a focus on concept drift detection. We developed an innovative method for detecting conceptual changes in image data streams based on discriminator loss analysis within a generative adversarial network (GAN) learning loop. We conducted research that showed that the Wasserstein GAN architecture with gradient penalty (WGAN-GP), which we used in the main part of our testing, performed best for our purposes. We observed that when the distribution of the input data changes abruptly, the loss of the discriminator for a given number of iterations increases sharply in absolute value. We exploited this specific property in the development of the Gan Loss Drift Detection (GLDD) method. We thoroughly tested the method on an image dataset MNIST digits, which we had previously transformed into ten different distributions. During the experiments, the GLDD-KSWIN version performed particularly well, achieving an average precision of 0.79, a recall of 0.90, an F1-score of 0.84, and a latency of 41.64. The results show that the proposed method provides a promising foundation for further research in this area, which still remains largely untouched and challenging.
Sekundarne ključne besede: machine learning;concept drift;deep learning;generative adversarial networks;incremental learning;computer and information science;diploma;Globoko učenje (strojno učenje);Računalništvo;Univerzitetna in visokošolska dela;
Vrsta dela (COBISS): Diplomsko delo/naloga
Študijski program: 1000468
Konec prepovedi (OpenAIRE): 1970-01-01
Komentar na gradivo: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Strani: 47 str.
ID: 23073801