Primož Poredoš (Avtor), He Shan (Avtor), Chenxi Wang (Avtor), Zhihui Chen (Avtor), Zhao Shao (Avtor), Fangfang Deng (Avtor), Haoran Liu (Avtor), Jiaqi Yu (Avtor), Ruzhu Wang (Avtor)

Povzetek

The world's first demonstration of passive radiative cooling under the sun in 2014 attracted substantial attention due to its ubiquitous and passive nature. Numerous nanophotonic and metamaterials capable of radiative sky cooling have been reported over the past decade. However, the cooling power density of such materials is approximately one magnitude lower (100 W m▫$^{−2}$▫) compared to terrestrial solar irradiation. Furthermore, improved optical characteristics could yield a modest increase in cooling power density due to the blackbody radiation limit. We report a rationally designed AsymSkyCool method (Asymmetrically sized heat-source-on-radiative-Sky-Cooling-coated-substrate) for radiative sky cooling thermal concentration (tcRC). The tcRC concept yields over 2000 W m▫$^{−2}$▫ at night and close to 1000 W m▫$^{−2}$▫ at 493 W m▫$^{−2}$▫ solar irradiation. The nearly tenfold improvement over the state-of-the-art sky cooling-based concentrators is enabled by advanced thermal management utilizing radiative energy concentration and localization. As climate plays a crucial role in the radiative sky cooling material performance, the concept has been experimentally verified in three geolocations, including Ljubljana, Slovenia (46.04°N), Shanghai, China (31.02°N), and Kunming, China (24.86°N). This work provides new insights into the usability of radiative sky cooling materials for thermal energy-intensive applications, such as high-power electronics cooling, radiative cooling-assisted sorbent- and solely radiative cooling-based atmospheric water harvesting that will unlock substantial benefits for advancements in energy, water, and food nexus.

Ključne besede

materiali za sevalno hlajenje z nebom;sevalna izmenjava;hlajenje;spektralno selektivni materiali;prenos toplote;koncentracija hladilne energije;atmosfersko pridobivanje vode;napredni toplotni inženiring;obnovljivi viri energije;materials for radiative sky cooling;radiative heat exchange;cooling;spectrally selective materials;heat transfer;cooling energy concentration;atmospheric water harvesting;advanced thermal engineering;renewable energy sources;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FS - Fakulteta za strojništvo
UDK: 697
COBISS: 187367171 Povezava se bo odprla v novem oknu
ISSN: 1754-5706
Št. ogledov: 30
Št. prenosov: 0
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: materiali za sevalno hlajenje z nebom;sevalna izmenjava;hlajenje;spektralno selektivni materiali;prenos toplote;koncentracija hladilne energije;atmosfersko pridobivanje vode;napredni toplotni inženiring;obnovljivi viri energije;
Vrsta dela (COBISS): Članek v reviji
Konec prepovedi (OpenAIRE): 2025-02-14
Strani: str. 2336–2355
Letnik: ǂVol. ǂ17
Zvezek: ǂiss. ǂ6
Čas izdaje: Mar. 2024
DOI: 10.1039/d3ee03214k
ID: 23204588
Priporočena dela:
, grand challenges in continuous atmospheric water harvesting
, dual-use devices offer a different path for more-sustainable living