diplomsko delo
Povzetek
V diplomskem delu se soočamo z odkrivanjem najslabših podskupin v napovednem modelu redne prodaje sadja in zelenjave. Osnovna želja je, da bi lahko model izboljšali tako, da vidimo, kje naredi napako, nato pa lahko z analizo ugotovimo, zakaj je napaka nastala. Problem smo rešili z uvedbo samodejnega postopka, ki išče kritične podskupine, tako da pridobi podatke, jih prečisti in pripravi, nato pa z uporabo algoritma za odkrivanje najde nekaj podskupin, ki so problematične. Poleg tega je bil velik del reševanja tudi analiza posameznih primerov za izboljšavo postopka. Po implementaciji se postopek redno izvaja in uporablja za poslovne potrebe podjetja.
Ključne besede
napovedovanje povpraševanja;prodaja;časovne vrste;napovedni model;podatkovna analiza;odkrivanje podskupin;visokošolski strokovni študij;diplomske naloge;
Podatki
Jezik: |
Slovenski jezik |
Leto izida: |
2024 |
Tipologija: |
2.11 - Diplomsko delo |
Organizacija: |
UL FRI - Fakulteta za računalništvo in informatiko |
Založnik: |
[N. Šemrl] |
UDK: |
004(043.2) |
COBISS: |
190817027
|
Št. ogledov: |
47 |
Št. prenosov: |
9 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Angleški jezik |
Sekundarni naslov: |
Discovery of critical subgroups in demand forecasting |
Sekundarni povzetek: |
The thesis deals with finding the worst subgroups in the forecasts of a machine learning model for fruits and vegetables. The primary goal is the improvement of the model, by seeing where it made a mistake, then analyzing that mistake and attempting to learn why it happened. We solved the problem by defining a process that searches for critical subgroups, first gathering and preparing the data, then running an algorithm to find a few problematic subgroups. Beside that, another part of problem solving was analyzing the cases themselves, to further improve the process. After the implementation, the process runs weekly and is used for the business needs of the company. |
Sekundarne ključne besede: |
demand forecasting;sales;time series;forecasting model;data analysis;subgroup discovery;computer science;diploma;Napovedovanje;Povpraševanje (ekonomija);Analiza časovnih vrst;Računalništvo;Univerzitetna in visokošolska dela; |
Vrsta dela (COBISS): |
Diplomsko delo/naloga |
Študijski program: |
1000470 |
Konec prepovedi (OpenAIRE): |
1970-01-01 |
Komentar na gradivo: |
Univ. v Ljubljani, Fak. za računalništvo in informatiko |
Strani: |
42 str. |
ID: |
23215657 |