Miha Srdinšek (Avtor), Tomaž Prosen (Avtor), Spyros Sotiriadis (Avtor)

Povzetek

The validity of the ergodic hypothesis in quantum systems can be rephrased in the form of the eigenstate thermalization hypothesis (ETH), a set of statistical properties for the matrix elements of local observables in energy eigenstates, which is expected to hold in any ergodic system. We test the ETH in a nonintegrable model of relativistic quantum field theory (QFT) using the numerical method of Hamiltonian truncation in combination with analytical arguments based on Lorentz symmetry and renormalization group theory. We find that there is an infinite sequence of eigenstates with the characteristics of quantum many-body scars—that is, exceptional eigenstates with observable expectation values that lie far from thermal values—and we show that these states are one-quasiparticle states. We argue that in the thermodynamic limit the eigenstates cover the entire area between two diverging lines: the line of one-quasiparticle states, whose direction is dictated by relativistic kinematics, and the thermal average line. Our results suggest that the strong version of the ETH is violated in any relativistic QFT whose spectrum admits a quasiparticle description.

Ključne besede

statistična fizika;termalizacija lastnih stanj;kvantna teorija polja;statistical physics;eigenstate thermalization;quantum field theory;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 536.93
COBISS: 191511299 Povezava se bo odprla v novem oknu
ISSN: 0031-9007
Št. ogledov: 8
Št. prenosov: 0
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: statistična fizika;termalizacija lastnih stanj;kvantna teorija polja;
Vrsta dela (COBISS): Članek v reviji
Strani: str. 021601-1-021601-7
Letnik: ǂVol. ǂ132
Zvezek: ǂiss. ǂ2
Čas izdaje: 2024
DOI: 10.1103/PhysRevLett.132.021601
ID: 23349884