Povzetek

The existence of only a few bubbles could drastically reduce the acoustic wave speed in a liquid. Wood’s equation models the linear sound speed, while the speed of an ideal shock waves is derived as a function of the pressure ratio across the shock. The common finite amplitude waves lie, however, in between these limits. We show that in a bubbly medium, the high frequency components of finite amplitude waves are attenuated and dissipate quickly, but a low frequency part remains. This wave is then transmitted by the collapse of the bubbles and its speed decreases with increasing void fraction. We demonstrate that the linear and the shock wave regimes can be smoothly connected through a Mach number based on the collapse velocity of the bubbles.

Ključne besede

kavitacija;mehurčki;cavitation;bubbles;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FS - Fakulteta za strojništvo
UDK: 532.528
COBISS: 194638339 Povezava se bo odprla v novem oknu
ISSN: 1879-3533
Št. ogledov: 11
Št. prenosov: 1
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: mehurčkasti fluid;hitrost toka;direktna numerična simulacija;želatina;visokohitrostna fotografija;
Vrsta dela (COBISS): Članek v reviji
Strani: str. 1-9
Zvezek: ǂVol. ǂ176, [article no.] 104826
Čas izdaje: Jun. 2024
DOI: 10.1016/j.ijmultiphaseflow.2024.104826
ID: 23628085
Priporočena dela:
, questioning the microjet impact influence and suggesting a possible way to erosion mitigation