Povzetek
Machine learned generative design is an extension of the generative design process, addressing its inherent limitations, particularly those of interoperability. The proposed approach uses machine learning-based surrogate models, trained on computational model data, to replicate design evaluations and integrate them into a common environment. In this way, design alternatives can be generated and tested that satisfy all design requirements and considerations. The effectiveness of this approach is demonstrated by the design and optimisation of the enclosure structure for the New Robotic Telescope. Its complexity is characterised by multiple operating states that the enclosure can assume, in particular the closed state and the opening/closing state, each of which has a different structural behaviour. Using our approach, the results from each state were replicated with machine learning models and combined into a single evaluation model. This resulted in findin g multiple solutions that outperformed the benchmark design. The results demonstrate not only the success of our method over conventional strategies, but also highlight its potential to redefine future design optimisation processes.
Ključne besede
računsko načrtovanje;generativno načrtovanje;strojno učenje;optimizacija;nadomestno modeliranje;computational design;generative design;machine learning;optimization;surrogate modelling;
Podatki
Jezik: |
Angleški jezik |
Leto izida: |
2024 |
Tipologija: |
1.01 - Izvirni znanstveni članek |
Organizacija: |
UL FGG - Fakulteta za gradbeništvo in geodezijo |
UDK: |
004:624 |
COBISS: |
180736259
|
ISSN: |
0926-5805 |
Št. ogledov: |
46 |
Št. prenosov: |
5 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Slovenski jezik |
Sekundarne ključne besede: |
računsko načrtovanje;generativno načrtovanje;strojno učenje;optimizacija;nadomestno modeliranje; |
Vrsta dela (COBISS): |
Članek v reviji |
Strani: |
16 str. |
Zvezek: |
ǂVol. ǂ159, [article no.] 105284 |
Čas izdaje: |
Mar. 2024 |
DOI: |
10.1016/j.autcon.2024.105284 |
ID: |
23674333 |