diplomsko delo
Minja Zorc (Avtor), Janez Demšar (Mentor)

Povzetek

Učenje optimalne odločitve s klasifikacijskimi drevesi

Ključne besede

strojno učenje;klasifikacijsko drevo;optimalna odločitev;mera za izbiro atributa;računalništvo;univerzitetni študij;diplomske naloge;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FRI - Fakulteta za računalništvo in informatiko
Založnik: [M. Zorc]
UDK: 004(043.2)
COBISS: 7149396 Povezava se bo odprla v novem oknu
Št. ogledov: 141
Št. prenosov: 7
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: [Learning optimal decisions with classification trees]
Sekundarni povzetek: Learning classification and regression models is one of the most important subfields of machine learning. Classification and regression models are constructed from learning set and used to classify new examples. In practice, we would often need model, which proposes optimal decision, for instance the best therapy for a certain type of illness for a particular patient. The main aim of the diploma thesis is to adapt the algorithm for the construction of classification trees to construct trees that would not predict the outcome but rather the decision leading to the desired outcome. Besides that, we had to develop the methods for measuring the quality of such models, and use it to test them on synthetic and real-world data sets.
Sekundarne ključne besede: machine learning;classification tree;attribute selection measure;optimal therapy;computer science;diploma;
Vrsta datoteke: application/pdf
Vrsta dela (COBISS): Diplomsko delo
Komentar na gradivo: Univerza v Ljubljani, Fakulteta za računalništvo in informatiko
Strani: 39 str.
ID: 23868200