diplomsko delo na interdisciplinarnem univerzitetnem študiju
Simon Kozina (Avtor), Ivan Bratko (Mentor), Matjaž Gams (Komentor)

Povzetek

Na tržišču je vse več sistemov za oddaljeno nadzorovanje starejših ljudi. Večina teh sistemov je dragih in ljudem nedostopnih, saj uporabljajo zelo napredno opremo za nadzor. Osnovne funkcije nadzora bi lahko opravljali s cenovno dostopnimi senzorji, kot so pospeškomeri. Namen diplomskega dela je bila izdelava sistema za nadzor sprememb v hoji človeka. Pri delu smo uporabljali pospeške leve in desne noge v vseh treh koordinatnih smereh. Ugotovili smo, da je najboljši pristop k rešitvi problema delitev naše množice podatkov na fiksne časovne intervale. Brez te predpostavke bi težko določili pravilne atribute potrebne za strojno učenje. Da bi bolje razumeli podatke enega časovnega intervala, smo hojo razdelili na njene primitivne elemente - korake. S pomočjo splošne karakteristike hoje smo zasnovali dva algoritma. Skupaj nam razdelita podatke na posamezne korake. Izbrali smo osem različnih atributov značilnih za hojo. Nato smo poskusili ustvariti univerzalni model strojnega učenja, kateri bi prepoznal razlike med normalno hojo in šepanjem. Testiranje smo opravili na različnih časovnih intervalih. Izkazalo se je, da je podatke bolje razrezati na daljše množice. Tako dobimo bolj zanesljive informacije o hoji človeka na obravnavanem intervalu. Ugotovili smo, da je SVM najboljši model strojnega učenja za predstavljen klasifikacijski problem.

Ključne besede

nazdor hoje;strojno učenje;pospeškomer;ocenjevanje točnosti;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FRI - Fakulteta za računalništvo in informatiko
Založnik: [S. Kozina]
UDK: 004.8
COBISS: 23986727 Povezava se bo odprla v novem oknu
Št. ogledov: 40
Št. prenosov: 3
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Development of a system for monitoring changes in human gait
Sekundarni povzetek: On the market, there are more and more di®erent systems for monitoring elderly people. Most of the systems are expensive and inaccessible since they use very sophisticated monitoring equipment. Basic functions of monitoring could be done by reasonably priced sensors such as accelerometers. The object of this work was to develop the system for monitoring changes in human gait. We used data from accelerometers attached to the left and right ankle. Accelerations are represented in three-dimensional coordinate system. We realized the best solution to our problem was to divide data set into ¯xed time intervals. Without this assumption it would have been di±cult to deter- mine the right attributes for machine learning. To better understand the data in one interval, we divided walking into its primitive elements - steps. By using some gait characteristics we were able to conceive two algorithms. Together they enabled us to divide data into single steps. Eight di®erent attributes distinctive for walking were chosen. The next thing was an attempt to create universal training data set that could recognize the di®erence between normal walking and limping. Testing was done on di®erent time intervals. It proved successful to divide data into longer time intervals. By doing so we got better information about gait in one time interval. SVM proved to be the optimal machine learning model for the presented classi¯cation problem.
Sekundarne ključne besede: gait monitoring;machine leraning;accelerometer;accuracy assessment;
Vrsta datoteke: application/pdf
Vrsta dela (COBISS): Diplomsko delo
Komentar na gradivo: Univ. v Ljubljani, Fakulteta za računalništvo in informatiko
Strani: 45 str.
ID: 23936548