diplomsko delo
Alen Jakovac (Avtor), Igor Kononenko (Mentor)

Povzetek

Napovedovanje lastnosti papirja iz spektrometričnih podatkov s strojnim učenjem

Ključne besede

spektroskopija NIR;kemijske in fizikalne lastnosti papirja;predprocesiranje spektrov NIR;strojno učenje;kalibracija;računalništvo;univerzitetni študij;diplomske naloge;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FRI - Fakulteta za računalništvo in informatiko
Založnik: [A. Jakovac]
UDK: 004.85(043.2)
COBISS: 8731220 Povezava se bo odprla v novem oknu
Št. ogledov: 37
Št. prenosov: 1
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: The prediction of paper properties from spectrometric data with machine learning
Sekundarni povzetek: In this thesis we present a solution for the problem of predicting the chemical and physical properties of paper from spectrometric data. We used a data set that consists of over 1000 samples of paper. For each sample 15 chemical and physical properties and its near-infrared spectra were measured. We used the following machine learning methods to predict the properties of paper: linear regression, pace regression, a nearest neighbor-based model, regression trees, a support vector machine, principal component regression, partial least squares regression, a multi-layer perceptron, and a radial basis function network. The prediction task turned out to be linear. Therefore, linear regression, principal component regression, and partial least squares regression gave the best results. Many outside factors affect the spectra and cause different types of interference. We used the following spectra preprocessing methods to remove the interference and improve the predictions: absorbance transformation, Kubelka-Munk transformation, multiplicative scatter correction, standard normal variate transformation, spectra derivation and orthogonal signal correction. We also investigated how preprocessing affects the machine learning methods. The results show that most preprocessing methods improve the models' predictions. The standard normal variate transformation and multiplicative scatter correction gave the best results. We tried to further improve the predictions with calibration. However, calibration did not improve the predictions.
Sekundarne ključne besede: NIR spectroscopy;chemical and physical properties of paper;preprocessing NIR spectra;machine learning;calibration;computer science;diploma;
Vrsta datoteke: application/pdf
Vrsta dela (COBISS): Diplomsko delo
Komentar na gradivo: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Strani: 86 str.
ID: 24093574