diplomsko delo
Sašo Brus (Avtor), Matija Marolt (Mentor)

Povzetek

Prepoznavanje akordov s skritim markovskim modelom

Ključne besede

akord;hmm;mirex;fft;računalništvo;računalništvo in informatika;univerzitetni študij;diplomske naloge;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FRI - Fakulteta za računalništvo in informatiko
Založnik: [S. Brus]
UDK: 004.9(043.2)
COBISS: 10156884 Povezava se bo odprla v novem oknu
Št. ogledov: 73
Št. prenosov: 15
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Chord recognition with a hidden Markov model
Sekundarni povzetek: In this paper a system for automatic chord estimation of an input song is presented. Our system is based on a Hidden Markov model – HMM. Visual representation of HMM elements is offered. Metric called Chromagram is used for evaluation of system states. Learn and evaluation processes are presented. Our system learns rules and performs evaluation on Isophonics musical database. Our system achieves 62% classification accuracy using 10-fold validation. Chord alphabet, used in our model, contains 25 chord states. We present reasons for achieved results and perform detailed estimation analysis. Our approach contains knowledge of music theory and psychoacoustics. All methods, used in our system are argued and compared with modern systems. Further, some options for improving classification accuracy are presented.
Sekundarne ključne besede: chord;hmm;mirex;fft;computer science;computer and information science;diploma;
Vrsta datoteke: application/pdf
Vrsta dela (COBISS): Diplomsko delo/naloga
Komentar na gradivo: Univerza v Ljubljani, Fak. za računalništvo in informatiko
Strani: 63 str.
ID: 24207355
Priporočena dela:
, diplomsko delo
, diplomsko delo