diplomsko delo
Leon Noe Jovan (Avtor), Zoran Bosnić (Mentor)

Povzetek

Prepoznavanje žaljivih objav z metodami strojnega učenja

Ključne besede

strojno učenje;tekstovno rudarjenje;klasifikacija;žaljive objave;računalništvo;računalništvo in informatika;univerzitetni študij;diplomske naloge;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FRI - Fakulteta za računalništvo in informatiko
Založnik: [L. N. Jovan]
UDK: 004.8(043.2)
COBISS: 10132564 Povezava se bo odprla v novem oknu
Št. ogledov: 74
Št. prenosov: 5
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Detecting offensive posts with machine learning methods
Sekundarni povzetek: The main goal of this thesis was to develop a recognition system for offensive posts on the web. Theoretical backgrounds of machine learning, text mining and text categorization approaches are given for better understanding of this field of computer science. We present a framework of such a system, from text pre-processing, feature selection, term weighting to selection of best classifiers. The results are tested using the data obtained from a related competition on Kaggle. For the purpose of the thesis a database of Slovenian comments was built, which serves as a data set to verify the success of the classification of offensive comments in Slovenian language.
Sekundarne ključne besede: machine learning;text mining;classification;offensive posts;computer science;computer and information science;diploma;
Vrsta datoteke: application/pdf
Vrsta dela (COBISS): Diplomsko delo/naloga
Komentar na gradivo: Univerza v Ljubljani, Fak. za računalništvo in informatiko
Strani: 65 str.
ID: 24207397