diplomsko delo
Povzetek
V tem diplomskem delu bomo predstavili področje strojnega učenja, bolj specifično področje
globokega učenja. V teoretičnem delu bomo prikazali, kako se je strojno učenje do sedaj že
uporabljalo v športu, kako strojno in globoko učenje delujeta ter kako poteka proces učenja
konvolucijskih nevronskih mrež. V praktičnem delu bomo ustvarili svojo učno množico in
nato z algoritmom, ki je zasnovan na konvolucijskih nevronskih mrežah, ustvarili model, ki
je zmožen določati uspešnost počepa po pravilih zveze za Powerlifting.
Ključne besede
strojni vid;globoko učenje;konvolucijske nevronske mreže;powerlifting;diplomske naloge;
Podatki
Jezik: |
Slovenski jezik |
Leto izida: |
2024 |
Tipologija: |
2.11 - Diplomsko delo |
Organizacija: |
UM FERI - Fakulteta za elektrotehniko, računalništvo in informatiko |
Založnik: |
[N. Graj] |
UDK: |
004.8796.88(043.2) |
COBISS: |
220206083
|
Št. ogledov: |
0 |
Št. prenosov: |
12 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Angleški jezik |
Sekundarni naslov: |
Determining squat depth with the help of machine vision |
Sekundarni povzetek: |
In this diploma thesis, we will delve into the field of machine learning, specifically focusing
on the area of deep learning. In the theoretical part, we will examine how machine learning
has been until now used in sports and as well as how machine learning, deep learning, and
the process of training convolutional neural networks work. In the practical part, we will
create our own training dataset and use an algorithm based on convolutional neural
networks to create a model capable of assessing the performance of a squat according to
the rules of the International Powerlifting Federation. |
Sekundarne ključne besede: |
machine learning;deep learning;convolutional neural networks;powerlifting;bachelor's degrees; |
Vrsta dela (COBISS): |
Diplomsko delo/naloga |
Komentar na gradivo: |
Univ. v Mariboru, Fak. za elektrotehniko, računalništvo in informatiko, Informatika in tehnologije komuniciranja |
Strani: |
1 spletni vir (1 datoteka PDF (XII, 40 f.)) |
ID: |
24420254 |