delo diplomskega seminarja
Povzetek
V diplomskem delu bomo obravnavali parcialna delovanja grup. Na začetku si bomo pogledali strukturo zožitve delovanja grupe na podmnožico, ki bo služila kot motivacijski primer za definicijo parcialnega delovanja grupe. V nadaljevanju bomo pokazali, da se da vsako parcialno delovanje grupe na množici globalizirati, tj. pokazali bomo, da je vsako parcialno delovanje zožitev delovanja grupe. Zaključili bomo s tem, da si pogledamo topologijo, ki se porodi pri globalizaciji parcialnega delovanja topološke grupe na topološkem prostoru.
Ključne besede
parcialna delovanja grup;globalizacija;inverzne polgrupe;parcialne permutacije;simetrični inverzni monoid;premorfizem;parcialno delovanje topološke grupe;
Podatki
Jezik: |
Slovenski jezik |
Leto izida: |
2024 |
Tipologija: |
2.11 - Diplomsko delo |
Organizacija: |
UL FMF - Fakulteta za matematiko in fiziko |
Založnik: |
[I. Kesar] |
UDK: |
512 |
COBISS: |
200276227
|
Št. ogledov: |
61 |
Št. prenosov: |
5 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Angleški jezik |
Sekundarni naslov: |
Partial actions of groups |
Sekundarni povzetek: |
In this work we will study partial group actions. We will begin by looking at the structure of restrictions of group actions, which will serve to motivate the definition of partial group actions. Then we will show, that each partial group action can be globalised, that is, we will show that every partial group action is a restriction of a group action. At the end we will look at the topology that arises when we globalise a partial action of a topological group on a topological space. |
Sekundarne ključne besede: |
partial group actions;globalisation;inverse semigroups;partial permutation;symmetric inverse semigroup;premorphism;partial action of a topological group; |
Vrsta dela (COBISS): |
Delo diplomskega seminarja/zaključno seminarsko delo/naloga |
Študijski program: |
0 |
Komentar na gradivo: |
Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 1. stopnja |
Strani: |
35 str. |
ID: |
24505509 |