diplomsko delo
Robert Samardžija (Avtor), Zoran Bosnić (Mentor), Dragoslav Radin (Komentor)

Povzetek

Področje generativne umetne inteligence je v letu 2022 v tehnološko stroko in tudi v ostale stroke prineslo revolucijo. Razcvet na področju osnovnih modelov je omogočil ustvarjanje realističnih in kompleksnih vsebin različnih vrst ter odprl vrata novim pristopom na področjih ustvarjalnosti, strojnega prevajanja in odločanja. V diplomski nalogi raziščemo uporabo velikih jezikovnih modelov za generiranje dokumentacije iz izvorne kode. Ogledamo si pristope inženiringa poizvedb, zasnujemo in razvijemo prototip generatorja ter ocenimo zmogljivost velikih jezikovnih modelov na zastavljeni nalogi. Izpostavimo težavo narave delovanja jezikovnih modelov, ki lahko pri različnih izvajanjih ustvarijo nezaželene razlike v rezultatih, in problem prilagajanja naše metode na delovanje specifičnega jezikovnega modela. Delo zaključimo z ugotovitvijo, da implementacija naše metode zadovoljuje potrebe podjetja DevRev in predstavlja alternativo obstoječim generatorjem dokumentacije, ki ne uporabljajo jezikovnih modelov. Predstavimo možne izboljšave, ki vključujejo uporabo jezikovnih modelov iz različnih družin in integracijo prototipa v storitev Airdrop platforme DevRev.

Ključne besede

veliki jezikovni modeli;generatorji dokumentacije; inženiring poizvedb;GPT;univerzitetni študij;diplomske naloge;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FRI - Fakulteta za računalništvo in informatiko
Založnik: [R. Samardžija]
UDK: 004.85:81'322(043.2)
COBISS: 207569923 Povezava se bo odprla v novem oknu
Št. ogledov: 239
Št. prenosov: 66
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Use of large language models for generating source code documentation
Sekundarni povzetek: The field of generative artificial intelligence brought about a revolution in technology and other disciplines in the year 2022. The development and incredible success of foundation models enabled the creation of realistic and complex content of various kinds and introduced new approaches in creativity, machine translation and decision-making. In our work, we explore the use of large language models for generating source code documentation. We examine prompt engineering approaches, design and develop a prototype of the generator and evaluate the performance of large language models on the set task. We highlight the challenging nature of language models, whose output can undesirably differ between runs, and the problem of tuning our method to one specific language model. The work concludes with the finding that the implementation of our method satisfies the needs of DevRev and represents an alternative to existing documentation generators that do not use language models. We also present possible improvements that include the use of language models from different families and the integration of our prototype into DevRev's Airdrop service.
Sekundarne ključne besede: large language models;documentation generators;prompt engineering;GPT;computer and information science;diploma;Računalniško jezikoslovje;Računalništvo;Univerzitetna in visokošolska dela;
Vrsta dela (COBISS): Diplomsko delo/naloga
Študijski program: 1000468
Konec prepovedi (OpenAIRE): 1970-01-01
Komentar na gradivo: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Strani: 49 str.
ID: 24676131