diplomsko delo
Miha Lazić (Avtor), Žiga Emeršič (Mentor)

Povzetek

Anotacija slik je ključen, a večkrat zamuden korak pri pripravi slikovnih podatkovnih zbirk. Poleg grafičnega vmesnika anotacijskega orodja, na hitrost anotacije vplivajo implementirani segmentacijski pristopi. Z razvojem globokega učenja na področju računalniškega vida se je pojavila možnost nadomestitve ročne anotacije in tradicionalnih segmentacijskih algoritmov s hitrejšimi in bolj natančnimi pristopi. Eden takšnih je temeljni model Segment Anything, ki smo ga analizirali v večih različicah (ViT-b, ViT-l, ViT-h, MobileSAM, SAM-Med2D, MedSAM) in testirali na podatkovni zbirki kolonoskopskih slik Kvasir-SEG in kolonoskopskih inštrumentov Kvasir-Instrument. Ovrednotili smo natančnost segmentacije in časovno zahtevnost modelov z resničnimi maskami objektov in na podlagi rezultatov, implementirali funkcionalnosti najboljšega modela v prototipni anotacijski program.

Ključne besede

anotacija;segmentacija;temeljni model; kolonoskopske slike ;visokošolski strokovni študij;diplomske naloge;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FRI - Fakulteta za računalništvo in informatiko
Založnik: [M. Lazić]
UDK: 004.85:004.93:616.34 78.082.4(043.2)
COBISS: 208428803 Povezava se bo odprla v novem oknu
Št. ogledov: 151
Št. prenosov: 39
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Colonoscopy image annotation with foundation models
Sekundarni povzetek: Image annotation is a crucial but often time-consuming step in preparing image datasets. In addition to the graphical interface of the annotation tool, the speed of annotation is influenced by the implemented segmentation approaches. With the development of deep learning in the field of computer vision, the possibility has arisen to replace manual annotation and traditional segmentation algorithms with faster and more accurate approaches. One such model is the foundation model Segment Anything, which we analyzed in various versions (ViT-b, ViT-l, ViT-h, MobileSAM, SAM-Med2D, MedSAM) and tested on the Kvasir-SEG dataset of colonoscopic images and the Kvasir-Instrument dataset of colonoscopic instruments. We evaluated the segmentation accuracy and time complexity of the models with ground-truth object masks and, based on the results, implemented the functionalities of the best model into a prototype annotation program.
Sekundarne ključne besede: annotation;segmentation;deep learning;vision transformer; foundation model;segment anything;colonoscopy;computer science;diploma;Računalniški vid;Strojno učenje;Kolonoskopija;Računalništvo;Univerzitetna in visokošolska dela;
Vrsta dela (COBISS): Diplomsko delo/naloga
Študijski program: 1000470
Konec prepovedi (OpenAIRE): 1970-01-01
Komentar na gradivo: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Strani: 1 spletni vir (1 datoteka PDF (33 str.))
ID: 24862810