diplomsko delo
Anton Križnar (Avtor), Jure Žabkar (Mentor)

Povzetek

Argumentirano strojno učenje (ABML) (angl. argument based machine learning) je razširitev metod strojnega učenja, kjer s podajanjem argumentov pri napačno klasificiranih primerih dodajamo znanje domenskega strokovnjaka. ABML običajno razširja metode, ki se učijo klasifikacijska pravila. Sodobne metode za nalogo klasifikacije slik uporabljajo konvolucijske nevronske mreže (CNN) (angl. convolutional neural network), ki jih nadgrajujemo s principi ABML. Glavni izziv je vključevanje principov ABML v model globokega strojnega učenja, saj so ti modeli težko razložljivi. Za razlago modelov CNN je primerna tehnika pridobivanja aktivacijske slike razreda (CAM) (ang. class activation mapping). Težko razložljivo pa je tudi domensko znanje za klasifikacijo slik. Argumente domenskega strokovnjaka lahko zajamemo kot točke na sliki. S primerjavo slik CAM in formalnih argumentov lahko v model vključimo domensko znanje. Oznake za konstrukcijo argumentov so bile zajete z razvitim programom in računalniško miško. Analiza delovanja razvitega modela je narejena na umetnih slikah likov. Pokazali smo, da z uporabo ABML za klasifikacijo slik lahko izboljšamo uspešnost modela tudi z različnimi vrstami argumentov.

Ključne besede

argumentirano strojno učenje;konvolucijske nevronske mreže;klasifikacija slik;univerzitetni študij;diplomske naloge;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FRI - Fakulteta za računalništvo in informatiko
Založnik: [A. Križnar]
UDK: 004.85(043.2)
COBISS: 211574275 Povezava se bo odprla v novem oknu
Št. ogledov: 79
Št. prenosov: 18
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Argument Based Machine Learning for Image Classification
Sekundarni povzetek: Argument based machine learning (ABML) is an extension of machine learning methods in which domain experts provide additional knowledge by giving arguments for incorrectly classified cases. ABML typically extends methods that learn classification rules. The most advanced techniques for image classification tasks use convolutional neural networks (CNNs), which we are enhancing with ABML principles. The main challenge is incorporating ABML principles into a deep learning model, as these models are often difficult to interpret. Moreover, domain knowledge for image classification is challenging to interpret. One suitable technique for explaining CNN model decisions is class activation mapping (CAM). Domain expert arguments can be captured using a computer mouse and then incorporated into the model. By comparing CAMs with formal arguments, domain knowledge can be integrated into the model. Labels for constructing arguments were captured using a developed program and a computer mouse. The analysis of the model's performance was conducted using synthetic images of geometric shapes. We showed an improvement in performance for the ABML model for image classification even with different kinds of arguments.
Sekundarne ključne besede: argument based machine learning;convolutional neural networks;image classification;computer and information science;diploma;Strojno učenje;Nevronske mreže (računalništvo);Računalništvo;Univerzitetna in visokošolska dela;
Vrsta dela (COBISS): Diplomsko delo/naloga
Študijski program: 1000468
Konec prepovedi (OpenAIRE): 1970-01-01
Komentar na gradivo: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Strani: 1 spletni vir (1 datoteka PDF (38 str.))
ID: 24985099