Jamal Momeni (Avtor), Melanie Parejo (Avtor), Rasmus O. Nielsen (Avtor), Jorge Langa (Avtor), Iratxe Montes (Avtor), Laetitia Papoutsis (Avtor), Leila Farajzadeh (Avtor), Christian Brendixen (Avtor), Eliza Cǎuia (Avtor), Aleš Gregorc (Avtor)

Povzetek

Background: With numerous endemic subspecies representing four of its five evolutionary lineages, Europe holds a large fraction of Apis mellifera genetic diversity. This diversity and the natural distribution range have been altered by anthropogenic factors. The conservation of this natural heritage relies on the availability of accurate tools for subspecies diagnosis. Based on pool-sequence data from 2145 worker bees representing 22 populations sampled across Europe, we employed two highly discriminative approaches (PCA and FST) to select the most informative SNPs for ancestry inference. Results: Using a supervised machine learning (ML) approach and a set of 3896 genotyped individuals, we could show that the 4094 selected single nucleotide polymorphisms (SNPs) provide an accurate prediction of ancestry inference in European honey bees. The best ML model was Linear Support Vector Classifier (Linear SVC) which correctly assigned most individuals to one of the 14 subspecies or different genetic origins with a mean accuracy of 96.2% ± 0.8 SD. A total of 3.8% of test individuals were misclassified, most probably due to limited differentiation between the subspecies caused by close geographical proximity, or human interference of genetic integrity of reference subspecies, or a combination thereof. Conclusions: The diagnostic tool presented here will contribute to a sustainable conservation and support breeding activities in order to preserve the genetic heritage of European honey bees.

Ključne besede

Apis melllifera;European suspecies;conservation;machine learning;prediction;biodiversity;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UM FKBV - Fakulteta za kmetijstvo in biosistemske vede
Založnik: BioMed Central
UDK: 638.1
COBISS: 51100163 Povezava se bo odprla v novem oknu
ISSN: 1471-2164
Št. ogledov: 0
Št. prenosov: 0
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: medonosne čebele;evropske podvrste;ohranjanje;strojno učenje;napovedovanje;biotska raznovrstnost;
Vrsta dela (COBISS): Znanstveno delo
Strani: str. 1-12
Letnik: ǂVol. ǂ22
Zvezek: ǂNo. ǂ101
Čas izdaje: 2021
DOI: 10.1186/s12864-021-07379-7
ID: 25186257