Povzetek

Background: This paper addresses the problem of products’ terminal call rate (TCR) prediction during the warranty period. TCR refers to the information on the amount of funds to be reserved for product repairs during the warranty period. So far, various methods have been used to address this problem, from discrete event simulation and time series, to machine learning predictive models. Objectives: In this paper, we address the above named problem by applying deep learning models to predict terminal call rate. Methods/Approach: We have developed a series of deep learning models on a data set obtained from a manufacturer of home appliances, and we have analysed their quality and performance. Results: Results showed that a deep neural network with 6 layers and a convolutional neural network gave the best results. Conclusions: This paper suggests that deep learning is an approach worth exploring further, however, with the disadvantage being that it requires large volumes of quality data.

Ključne besede

proizvodnja;življenjski cikel izdelka;strojno učenje;manufacturing;product lifecycle;machine learning;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UM FOV - Fakulteta za organizacijske vede
Založnik: Bussiness information technology
UDK: 658.5
COBISS: 32488195 Povezava se bo odprla v novem oknu
ISSN: 1847-9375
Št. ogledov: 0
Št. prenosov: 0
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: proizvodnja;življenjski cikel izdelka;strojno učenje;napoved;
Vrsta dela (COBISS): Znanstveno delo
Strani: str. 36-50
Letnik: ǂVol. ǂ11
Zvezek: ǂno. ǂ2
Čas izdaje: 2020
DOI: 10.2478/bsrj-2020-0014
ID: 25746570