Povzetek
Large binary images are used in many modern applications of image processing. For instance, they serve as inputs or target masks for training machine learning (ML) models in computer vision and image segmentation. Storing large binary images in limited memory and loading them repeatedly on demand, which is common in ML, calls for efficient image encoding and decoding mechanisms. In the paper, we propose an encoding scheme for efficient compressed storage of large binary images based on chain codes, and introduce a new single-pass algorithm for fast parallel reconstruction of raster images from the encoded representation. We use three large real-life binary masks to test the efficiency of the proposed method, which were derived from vector layers of single-class objects – a building cadaster, a woody vegetation landscape feature map, and a road network map. We show that the masks encoded by the proposed method require significantly less storage space than standard lossless compression formats. We further compared the proposed method for mask reconstruction from chain codes with a recent state-of-the-art algorithm, and achieved between and faster reconstruction on test data
Ključne besede
strojno učenje;verižne kode;binarno enkodiranje;binary mask;machine learning;chain code;binary encoding;bitmap reconstruction;
Podatki
Jezik: |
Angleški jezik |
Leto izida: |
2024 |
Tipologija: |
1.01 - Izvirni znanstveni članek |
Organizacija: |
UM FERI - Fakulteta za elektrotehniko, računalništvo in informatiko |
Založnik: |
Springer Nature |
UDK: |
004.42 |
COBISS: |
207446531
|
ISSN: |
1573-7721 |
Št. ogledov: |
0 |
Št. prenosov: |
1 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Slovenski jezik |
Sekundarne ključne besede: |
strojno učenje;verižne kode;binarno enkodiranje; |
Vrsta dela (COBISS): |
Članek v reviji |
Strani: |
19 str. |
Čas izdaje: |
Published: 09 September 2024 |
DOI: |
10.1007/s11042-024-20199-7 |
ID: |
25801683 |