Jezik: | Slovenski jezik |
---|---|
Leto izida: | 2025 |
Tipologija: | 2.11 - Diplomsko delo |
Organizacija: | UL FRI - Fakulteta za računalništvo in informatiko |
Založnik: | [S. Logar] |
UDK: | 004.942:796.925(043.2) |
COBISS: |
229998339
![]() |
Št. ogledov: | 136 |
Št. prenosov: | 36 |
Ocena: | 0 (0 glasov) |
Metapodatki: |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Sekundarni jezik: | Angleški jezik |
---|---|
Sekundarni naslov: | Prediction of ski jump distances |
Sekundarni povzetek: | Ski jumping is a complex sport in which small changes in certain factors can result in significant differences in performance. This thesis focuses on predicting ski jump lengths using machine learning methods. We enriched the collected jump data with new attributes obtained by clustering. We used the random forest method to model the data. We tested the model on two tasks: regression-based prediction of jump lengths and forecasting competitors' final rankings at the end of the season. The results showed that the model has an error of 6 meters on a 100-meter ski jump. The final ranking deviates by one place on average, and sliding the time window gradually improves the predictive performance. The present work contributes to expanding the application of machine learning methods to this complex area and opens up space for further research. |
Sekundarne ključne besede: | sports analytics;data modeling;ski jumping;ranking prediction;computer science;computer and information science;computer science and mathematics;interdisciplinary studies;diploma; |
Vrsta dela (COBISS): | Diplomsko delo/naloga |
Študijski program: | 1000407 |
Konec prepovedi (OpenAIRE): | 1970-01-01 |
Komentar na gradivo: | Univ. v Ljubljani, Fak. za računalništvo in informatiko |
Strani: | 1 spletni vir (1 datoteka PDF (43 str.)) |
ID: | 26010927 |