diplomska naloga
Darja Vodišek (Avtor), Krištof Oštir (Mentor)

Povzetek

Opazovanje poplav s podatki daljinskega zaznavanja

Ključne besede

geodezija;diplomska dela;UNI;daljinsko zaznavanje;naravne nesreče;program Vesolje in velike nesreče;SPOT;analiza podob;normiran diferencialni vegetacijski indeks;klasifikacija;raba tal;

Podatki

Jezik: Slovenski jezik
Leto izida:
Izvor: Ljubljana
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FGG - Fakulteta za gradbeništvo in geodezijo
Založnik: [D. Vodišek]
UDK: 528.8:556.166(043.2)
COBISS: 4601185 Povezava se bo odprla v novem oknu
Št. ogledov: 1843
Št. prenosov: 827
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Observing floods from remote sensing data
Sekundarni povzetek: Remote sensing techniques have been used to observe various phenomena on the Earth. With improved satellite system natural disasters can be better monitored. The Thesis deals with the usefulness of satellite images in the case of natural disasters and presents the procedure with which we obtaine, preprocess, classify and interpret satellite images of catastrophic flood in year 2007. The international charter Space and Major Disasters was activated in order to get satellite images to observe floods. The satellite images SPOT have been processed as follows: orthorectification, pan-sharpening of multispektral images and contrast enhancement. Maximum likelihood algorithm was used as the main classifier and the accuracy of results was further improved by normalized difference vegetation index, digital elevation model and hydrological data. From these flooded areas statistical analysis for damaged land use was made.
Sekundarne ključne besede: graduation thesis;geodesy;remote sensing;natural disasters;Space and Major Disasters charter;SPOT;image analysis;normalized difference vegetation index;classification;land use;
Vrsta datoteke: application/pdf
Vrsta dela (COBISS): Diplomsko delo
Komentar na gradivo: Univ. Ljubljana, Fakulteta za gradbeništvo in geodezijo
Strani: XVI, 98 str., pril.
Vrsta dela (ePrints): thesis
Naslov (ePrints): Surface: Observing floods from remote sensing data
Ključne besede (ePrints): daljinsko zaznavanje;naravne nesreče;program Vesolje in velike nesreče;SPOT;analiza podob;normiran diferencialni vegetacijski indeks;klasifikacija;raba tal
Ključne besede (ePrints, sekundarni jezik): remote sensing;natural disasters;Space and Major Disasters charter;SPOT;image analysis;normalized difference vegetation index;classification;land use
Povzetek (ePrints): Z daljinskim zaznavanjem opazujemo razne pojave na Zemlji, s satelitskimi sistemi z boljšo prostorsko ločljivostjo lahko spremljamo naravne nesreče bolj nazorno. V diplomski nalogi sem predstavila uporabnost satelitskih posnetkov v primeru naravnih nesreč. Opisan je postopek pridobitve, predobdelave, klasifikacije in interpretacije satelitskih podob ob katastrofalni poplavi leta 2007. Z aktivacijo mednarodnega programa Vesolje in velike nesreče so bili za opazovanje poplave pridobljeni satelitski posnetki, sledila je ortorektifikacija, ostrenje večspektralne podobe s pankromatsko ter izboljšanje kontrasta uporabljenih podob SPOT. Iz predobdelanih podob SPOT sem s klasifikacijskim algoritmom metode največje verjetnosti določila poplavljena območja. Natančnost klasifikacije je bila izboljšana z normiranim diferencialnim vegetacijskim indeksom, z digitalnim modelom višin in s slojem hidrografije. Iz poplavljenih območij sledi statistična analiza poškodovane rabe tal.
Povzetek (ePrints, sekundarni jezik): Remote sensing techniques have been used to observe various phenomena on the Earth. With improved satellite system natural disasters can be better monitored. The Thesis deals with the usefulness of satellite images in the case of natural disasters and presents the procedure with which we obtaine, preprocess, classify and interpret satellite images of catastrophic flood in year 2007. The international charter Space and Major Disasters was activated in order to get satellite images to observe floods. The satellite images SPOT have been processed as follows: orthorectification, pan-sharpening of multispektral images and contrast enhancement. Maximum likelihood algorithm was used as the main classifier and the accuracy of results was further improved by normalized difference vegetation index, digital elevation model and hydrological data. From these flooded areas statistical analysis for damaged land use was made.
Ključne besede (ePrints, sekundarni jezik): remote sensing;natural disasters;Space and Major Disasters charter;SPOT;image analysis;normalized difference vegetation index;classification;land use
ID: 8310869