Sekundarni jezik: |
Angleški jezik |
Sekundarni naslov: |
Observing floods from remote sensing data |
Sekundarni povzetek: |
Remote sensing techniques have been used to observe various phenomena on the Earth. With
improved satellite system natural disasters can be better monitored. The Thesis deals with the
usefulness of satellite images in the case of natural disasters and presents the procedure with
which we obtaine, preprocess, classify and interpret satellite images of catastrophic flood in
year 2007.
The international charter Space and Major Disasters was activated in order to get satellite
images to observe floods. The satellite images SPOT have been processed as follows:
orthorectification, pan-sharpening of multispektral images and contrast enhancement.
Maximum likelihood algorithm was used as the main classifier and the accuracy of results
was further improved by normalized difference vegetation index, digital elevation model and
hydrological data. From these flooded areas statistical analysis for damaged land use was
made. |
Sekundarne ključne besede: |
graduation thesis;geodesy;remote sensing;natural disasters;Space and Major Disasters charter;SPOT;image analysis;normalized difference vegetation index;classification;land use; |
Vrsta datoteke: |
application/pdf |
Vrsta dela (COBISS): |
Diplomsko delo |
Komentar na gradivo: |
Univ. Ljubljana, Fakulteta za gradbeništvo in geodezijo |
Strani: |
XVI, 98 str., pril. |
Vrsta dela (ePrints): |
thesis |
Naslov (ePrints): |
Surface: Observing floods from remote sensing data |
Ključne besede (ePrints): |
daljinsko zaznavanje;naravne nesreče;program Vesolje in velike nesreče;SPOT;analiza podob;normiran diferencialni vegetacijski indeks;klasifikacija;raba tal |
Ključne besede (ePrints, sekundarni jezik): |
remote sensing;natural disasters;Space and Major Disasters charter;SPOT;image analysis;normalized difference vegetation index;classification;land use |
Povzetek (ePrints): |
Z daljinskim zaznavanjem opazujemo razne pojave na Zemlji, s satelitskimi sistemi z boljšo prostorsko ločljivostjo lahko spremljamo naravne nesreče bolj nazorno. V diplomski nalogi sem predstavila uporabnost satelitskih posnetkov v primeru naravnih nesreč. Opisan je postopek pridobitve, predobdelave, klasifikacije in interpretacije satelitskih podob ob katastrofalni poplavi leta 2007. Z aktivacijo mednarodnega programa Vesolje in velike nesreče so bili za opazovanje poplave pridobljeni satelitski posnetki, sledila je ortorektifikacija, ostrenje večspektralne podobe s pankromatsko ter izboljšanje kontrasta uporabljenih podob SPOT. Iz predobdelanih podob SPOT sem s klasifikacijskim algoritmom metode največje verjetnosti določila poplavljena območja. Natančnost klasifikacije je bila izboljšana z normiranim diferencialnim vegetacijskim indeksom, z digitalnim modelom višin in s slojem hidrografije. Iz poplavljenih območij sledi statistična analiza poškodovane rabe tal. |
Povzetek (ePrints, sekundarni jezik): |
Remote sensing techniques have been used to observe various phenomena on the Earth. With
improved satellite system natural disasters can be better monitored. The Thesis deals with the
usefulness of satellite images in the case of natural disasters and presents the procedure with
which we obtaine, preprocess, classify and interpret satellite images of catastrophic flood in
year 2007.
The international charter Space and Major Disasters was activated in order to get satellite
images to observe floods. The satellite images SPOT have been processed as follows:
orthorectification, pan-sharpening of multispektral images and contrast enhancement.
Maximum likelihood algorithm was used as the main classifier and the accuracy of results
was further improved by normalized difference vegetation index, digital elevation model and
hydrological data. From these flooded areas statistical analysis for damaged land use was
made. |
Ključne besede (ePrints, sekundarni jezik): |
remote sensing;natural disasters;Space and Major Disasters charter;SPOT;image analysis;normalized difference vegetation index;classification;land use |
ID: |
8310869 |