diplomska naloga
Matjaž Mlakar (Avtor), Tomaž Ambrožič (Mentor), Dušan Kogoj (Član komisije za zagovor), Radoš Šumrada (Član komisije za zagovor), Janko Logar (Komentor)

Povzetek

Napovedovanje premikov pri plazenju tal z umetnimi nevronskimi mrežami RBF

Ključne besede

geodezija;diplomska dela;UNI;Macesnikov plaz;umetna nevronska mreža;RBF;geodetske meritve;premiki;padavine;analiza;

Podatki

Jezik: Slovenski jezik
Leto izida:
Izvor: Ljubljana
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FGG - Fakulteta za gradbeništvo in geodezijo
Založnik: [M. Mlakar]
UDK: 004:624.131.5(043.2)
COBISS: 5247841 Povezava se bo odprla v novem oknu
Št. ogledov: 5202
Št. prenosov: 532
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: ǂThe ǂprediction of landslide movements with RBF artificial neural networks
Sekundarni povzetek: The thesis deals with the problem of the prediction of landslide movements with artificial neural networks (ANN). Landslide movements are dependent on many parameters (rainfall, topography, geology, material, ...), what makes them hard to predict. The links between movements, rainfall, temperature and surface inkilnation are too complex to define them with mathematical equations. That is why we use artificial neural networks. In the beginning we describe the Macesnik landslide, where the observations took place. We continue with the description of previous observations on the Macesnik landslide and we analyze the influence of rainfall on movements of the landslide. Next, we describe artificial neural networks, distribution of the artificial neural networks, the criteria of distributing artificial neural networks and present a detail description of the radial basis function (RBF) neural networks. In the experimental part we have presented the use of artificial neural networks for the prediction of landslide movements. For input and output data we have used the measurements of rainfall and measured movements of the landslide, respectively. Our goal is to find a artificial neural network, which could be used for landslide movement prediction in the future. For the calculation we used two different sotwares – Matlab R2007b and Neurosolutions. At the end conclusions are given, which include a short summary of all major findings.
Sekundarne ključne besede: graduation thesis;geodesy;Macesnik's;landslides;artificial neural network;RBF;geodetic measurements;movements;rainfall;analysis;
Vrsta datoteke: application/pdf
Vrsta dela (COBISS): Diplomsko delo
Komentar na gradivo: Univ. v Ljubljani, Fak. za gradbeništvo in geodezijo
Strani: XII, 80 str., [4] pril.
Vrsta dela (ePrints): thesis
Naslov (ePrints): The prediction of landslide movements with RBF artificial neural networks
Ključne besede (ePrints): Macesnikov plaz;umetna nevronska mreža;RBF;geodetske meritve;premiki;padavine;analiza
Ključne besede (ePrints, sekundarni jezik): Macesnik’s landslide;artificial neural network;RBF;geodetic measurements;movements;rainfall;analysis
Povzetek (ePrints): Diplomska naloga predstavlja možnost uporabe umetnih nevronskih mrež pri napovedovanju premikov pri plazenju tal. Premiki plazov so odvisni od mnogih dejavnikov (padavine, topografija, geologija, materialne lastnosti, …), zato jih je težko napovedati. Povezave med premiki, padavinami, temperaturami in inklinacijo terena so preveč kompleksne, da bi jih opisali z matematičnimi formulami. Zato jih poskusimo opisati z umetnimi nevronskimi mrežami. V nalogi najprej predstavimo Macesnikov plaz, kjer so bile izvedene meritve. V nadaljevanju opišemo dosedanja opazovanja Macesnikovega plazu in analiziramo vpliv padavin na plazenje zemljin. Sledi predstavitev umetnih nevronskih mrež, razdelitev umetnih nevronskih mrež, kriteriji razdelitve umetnih nevronskih mrež in podrobna razložitev radialnih bazičnih umetnih nevronskih mrež. V eksperimentalnem delu je prikazana uporaba radialnih bazičnih umetnih nevronskih mrež pri napovedovanju plazenja zemljin. Za vhodne podatke smo uporabili meritve padavin, za izhodne pa premike plazenja zemljine. Cilj je dobiti naučeno umetno nevronsko mrežo, ki bi jo lahko uporabili za napovedovanje premikov v praksi. Za izračun uporabimo dve različni programski opremi – Matlab R2007b in Neurosolutions, katerih rezultate primerjamo med seboj. Na koncu podamo zaključek, ki vsebuje kratek povzetek vseh glavnih ugotovitev.
Povzetek (ePrints, sekundarni jezik): The thesis deals with the problem of the prediction of landslide movements with artificial neural networks (ANN). Landslide movements are dependent on many parameters (rainfall, topography, geology, material, ...), what makes them hard to predict. The links between movements, rainfall, temperature and surface inkilnation are too complex to define them with mathematical equations. That is why we use artificial neural networks. In the beginning we describe the Macesnik landslide, where the observations took place. We continue with the description of previous observations on the Macesnik landslide and we analyze the influence of rainfall on movements of the landslide. Next, we describe artificial neural networks, distribution of the artificial neural networks, the criteria of distributing artificial neural networks and present a detail description of the radial basis function (RBF) neural networks. In the experimental part we have presented the use of artificial neural networks for the prediction of landslide movements. For input and output data we have used the measurements of rainfall and measured movements of the landslide, respectively. Our goal is to find a artificial neural network, which could be used for landslide movement prediction in the future. For the calculation we used two different sotwares – Matlab R2007b and Neurosolutions. At the end conclusions are given, which include a short summary of all major findings.
Ključne besede (ePrints, sekundarni jezik): Macesnik’s landslide;artificial neural network;RBF;geodetic measurements;movements;rainfall;analysis
ID: 8312117
Priporočena dela:
, delo je pripravljeno v skladu s Pravilnikom o podeljevanju Prešernovih nagrad študentom, pod mentorstvom doc. dr. Tomaža Ambrožiča in somentorstvom doc. dr. Mirana Kuharja