Gregor Trtnik (Avtor), Franci Kavčič (Avtor), Goran Turk (Avtor)

Povzetek

Adiabatic hydration curves are the most suitable data for temperature calculations in concrete hardening structures. However, it is very difficult to predict the adiabatic hydration curve of an arbitrary concrete mixture. The idea of modeling adiabatic temperature rise during concrete hydration with the use of artificial neural networks was introduced in order to describe the adiabatic hydration of an arbitrary concrete mixture, depending on factors which influence the hydration process of cement in concrete. The influence of these factors was determined by our own experiments. A comparison between experimentally determined adiabatic curves and adiabatic curves, evaluated by proposed numerical model shows that artificial neural networks can be used to predict adiabatic hydration curves effectively. This model can be easily incorporated in the computer programs for prediction of the thermal fields in young concrete structures, implemented in the finite element or finite difference codes. New adiabatic hydration curves with some other initial parameters of the concrete mixture can be easily included in this model in order to expand the range of suitability of artificial neural networks to predict the adiabatic hydration curves. (C) 2008 Elsevier B.V. All rights reserved.

Ključne besede

sveži beton;adiabatne krivulje;hidratacije betona;eksperimenti;umetne nevronske mreže;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FGG - Fakulteta za gradbeništvo in geodezijo
Založnik: Elsevier
UDK: 624.012.4:004
COBISS: 4044385 Povezava se bo odprla v novem oknu
ISSN: 0926-5805
Št. ogledov: 2727
Št. prenosov: 837
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Vrsta datoteke: application/pdf
Vrsta dela (COBISS): Delo ni kategorizirano
Strani: str. 10-15
Letnik: Letn. 18
Zvezek: št. 1
Čas izdaje: 2008
DOI: 10.1016/j.autcon.2008.04.001
ID: 8312275